IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015288.html
   My bibliography  Save this article

Thermal performance analysis of eccentric double-selective-coated parabolic trough receivers with flat upper surface

Author

Listed:
  • Hu, Tianxiang
  • Zhang, Han
  • Kwan, Trevor Hocksun
  • Wang, Qiliang
  • Pei, Gang

Abstract

The Parabolic trough collector (PTC) system combined with molten salt energy storage system has gathered increasing attention owing to its advantages of high operating temperature and stable power output. However, the substantial heat loss experienced by parabolic through receivers (PTR) under high temperatures imposes limitations on the thermal efficiency and power generation potential of the PTC system. In this study, a novel eccentric double-selective-coated parabolic trough receiver is proposed. The upper surface of the receiver is flattened to further reduce radiation heat loss. Various distances from collector focus are explored to determine the most suitable opening angle of secondary selective coating, ensuring the highest thermal efficiency. The results show that, although the eccentricity causes partial optical loss, the reduced upper surface area and the resultant larger secondary coating opening angle contribute to a significant reduction in heat loss and an improved thermal efficiency of the novel receiver. The thermal efficiency of the new absorber can be improved by up to 20.59 % (under direct normal irradiance of 600W/m2 and a receiver surface temperature of 600 °C). Furthermore, the higher the emissivity and the lower the absorptivity of the solar selective coating, the better the performance of the novel absorber tube.

Suggested Citation

  • Hu, Tianxiang & Zhang, Han & Kwan, Trevor Hocksun & Wang, Qiliang & Pei, Gang, 2024. "Thermal performance analysis of eccentric double-selective-coated parabolic trough receivers with flat upper surface," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015288
    DOI: 10.1016/j.renene.2023.119613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    2. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
    3. Yang, Honglun & Wang, Qiliang & Huang, Yihang & Feng, Junsheng & Ao, Xianze & Hu, Maobin & Pei, Gang, 2019. "Spectral optimization of solar selective absorbing coating for parabolic trough receiver," Energy, Elsevier, vol. 183(C), pages 639-650.
    4. Gong, Jing-hu & Wang, Jun & Lund, Peter D., 2021. "Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator," Energy, Elsevier, vol. 228(C).
    5. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    6. Wang, Qiliang & Li, Jing & Yang, Honglun & Su, Katy & Hu, Mingke & Pei, Gang, 2017. "Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield," Energy, Elsevier, vol. 139(C), pages 447-458.
    7. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    8. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    9. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    10. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    11. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    12. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    13. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    14. Craig, K.J. & Moghimi, M.A. & Rungasamy, A.E. & Marsberg, J. & Meyer, J.P., 2016. "Finite-volume ray tracing using Computational Fluid Dynamics in linear focus CSP applications," Applied Energy, Elsevier, vol. 183(C), pages 241-256.
    15. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    16. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    17. Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
    18. El Ydrissi, Massaab & Ghennioui, Hicham & Bennouna, El Ghali & Farid, Abdi, 2020. "Techno-economic study of the impact of mirror slope errors on the overall optical and thermal efficiencies- case study: Solar parabolic trough concentrator evaluation under semi-arid climate," Renewable Energy, Elsevier, vol. 161(C), pages 293-308.
    19. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    3. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    4. Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
    5. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    6. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    7. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    8. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    9. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    10. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    11. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    12. Hu, Tianxiang & Kwan, Trevor Hocksun & Yang, Honglun & Wu, Lijun & Liu, Weixin & Wang, Qiliang & Pei, Gang, 2023. "Photothermal conversion potential of full-band solar spectrum based on beam splitting technology in concentrated solar thermal utilization," Energy, Elsevier, vol. 268(C).
    13. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    14. Ou, Gen & Liu, Peng & Liu, Zhichun & Liu, Wei, 2022. "Performance analyses and heat transfer optimization of parabolic trough receiver with a novel single conical strip insert," Renewable Energy, Elsevier, vol. 199(C), pages 335-350.
    15. Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
    16. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    17. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).
    18. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    19. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    20. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.