IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v218y2018icp494-510.html
   My bibliography  Save this article

Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology

Author

Listed:
  • Bitam, El Wardi
  • Demagh, Yassine
  • Hachicha, Ahmed A.
  • Benmoussa, Hocine
  • Kabar, Yassine

Abstract

Within the continuous improvement effort of parabolic trough collector (PTC) performances, a three-dimensional numerical model is carried out to investigate the turbulent flow and potential heat transfer enhancement in a novel parabolic trough receiver (PTR) where the conventional straight and smooth tube (CSST) receiver is replaced by a newly designed S-curved/sinusoidal one. Heat transfer performance and pressure drop penalty comparisons between CSST receiver and S-curved/sinusoidal tube receiver are conducted using synthetic oil as a heat transfer fluid (HTF). The validity of the model has been tested by comparing the numerical results with the available experimental data of the sinusoidal pipe heat exchangers. As a consequence of the shape of the novel tube receiver, the heat density distribution on the outer surface varies in both longitudinal and circumferential directions while it varies only in the circumferential direction on the corresponding CSST receiver. The analysis of the HTF flow through the novel PTR S-curved/sinusoidal tube showed the emergence of vortices at bends. It is established that, without any additional devices, the mean Nusselt number is expected to increase by 45%–63%, while the friction coefficient increases by less than 40.8%, which leads to a maximum performance evaluation criteria about 135%. The maximum circumferential temperature difference of the novel PTR S-curved tube decreases below 35 K for almost all the range of the mass flow rates and should result in the reduction of thermal stresses and heat losses.

Suggested Citation

  • Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
  • Handle: RePEc:eee:appene:v:218:y:2018:i:c:p:494-510
    DOI: 10.1016/j.apenergy.2018.02.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
    2. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    3. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Ravi Kumar, K. & Reddy, K.S., 2009. "Thermal analysis of solar parabolic trough with porous disc receiver," Applied Energy, Elsevier, vol. 86(9), pages 1804-1812, September.
    6. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    7. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    8. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    2. Piotr Bogusław Jasiński, 2021. "Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 2: Thermal Performance," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Zaharil, H.A. & Hasanuzzaman, M., 2020. "Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition," Renewable Energy, Elsevier, vol. 149(C), pages 22-41.
    4. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    5. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    6. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    7. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    8. Chinnasamy Subramaniyan & Jothirathinam Subramani & Balasubramanian Kalidasan & Natarajan Anbuselvan & Thangaraj Yuvaraj & Natarajan Prabaharan & Tomonobu Senjyu, 2021. "Investigation on the Optical Design and Performance of a Single-Axis-Tracking Solar Parabolic trough Collector with a Secondary Reflector," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    9. Ghodbane, Mokhtar & Said, Zafar & Hachicha, Ahmed Amine & Boumeddane, Boussad, 2020. "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids," Renewable Energy, Elsevier, vol. 151(C), pages 43-56.
    10. Sheikholeslami, M. & Said, Zafar & Jafaryar, M., 2022. "Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid," Renewable Energy, Elsevier, vol. 188(C), pages 922-932.
    11. Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.
    12. Mohammed, Hussein A. & Vuthaluru, Hari B. & Liu, Shaomin, 2022. "Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters," Renewable Energy, Elsevier, vol. 182(C), pages 401-426.
    13. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    14. Hachicha, Ahmed Amine & Said, Zafar & Rahman, S.M.A. & Al-Sarairah, Eman, 2020. "On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid," Renewable Energy, Elsevier, vol. 161(C), pages 1303-1317.
    15. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    16. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    5. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    6. Kurşun, Burak, 2019. "Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes," Renewable Energy, Elsevier, vol. 140(C), pages 816-827.
    7. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    8. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    9. Mohamad, Khaled & Ferrer, P., 2019. "Parabolic trough efficiency gain through use of a cavity absorber with a hot mirror," Applied Energy, Elsevier, vol. 238(C), pages 1250-1257.
    10. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    11. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    12. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    13. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    14. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2020. "Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube," Renewable Energy, Elsevier, vol. 155(C), pages 735-747.
    15. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    16. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    17. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    18. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    19. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    20. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:218:y:2018:i:c:p:494-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.