IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3261-d1684575.html
   My bibliography  Save this article

Experimental Study of a Stationary Parabolic Trough Collector with Modified Absorbers for Domestic Water Heating

Author

Listed:
  • Jihen Mahdhi

    (Mechanical Modelling, Energy & Materials, National School of Engineers, Gabes University, Zrig, Gabes 6029, Tunisia
    Modeling of Advanced Heat Transfer and Energy Problems Group, Dipartimento Energia “Galilo Ferraris”, Politecnico di Torino, 10129 Turin, Italy)

  • Fakher Hamdi

    (Mechanical Modelling, Energy & Materials, National School of Engineers, Gabes University, Zrig, Gabes 6029, Tunisia)

  • Hossein Ebadi

    (Modeling of Advanced Heat Transfer and Energy Problems Group, Dipartimento Energia “Galilo Ferraris”, Politecnico di Torino, 10129 Turin, Italy)

  • Abdallah Bouabidi

    (Mechanical Modelling, Energy & Materials, National School of Engineers, Gabes University, Zrig, Gabes 6029, Tunisia)

  • Ridha Ennetta

    (Mechanical Modelling, Energy & Materials, National School of Engineers, Gabes University, Zrig, Gabes 6029, Tunisia)

  • Laura Savoldi

    (Modeling of Advanced Heat Transfer and Energy Problems Group, Dipartimento Energia “Galilo Ferraris”, Politecnico di Torino, 10129 Turin, Italy)

Abstract

The requirement for energy transition through the residential sector has increased research on the dissemination of solar thermal power systems in this area. Parabolic Trough Collector (PTC), as one of the matured solar technologies for thermal power generation, has shown huge potential in meeting demands for heating and domestic hot water systems. In this experimental study, several small-scale PTCs have been developed with four alternative absorber shapes: a simple cylindrical absorber, a spiral absorber, and two different configurations of a sinusoidal absorber to examine their performance under domestic application (non-evacuated and non-tracking). The study aims to analyze the applicability of such systems to be used as a water-heating source in buildings and compare the performance of the proposed configurations in terms of thermal efficiency to find the most appropriate design. The experimental results revealed that the simple shape provides a minimum average thermal efficiency of 24%, while the maximum thermal efficiency of 32% is obtained with the spiral shape. Studying various orientations of the sinusoidal shape revealed that thermal efficiencies of 30% and 20% could be achieved using the parallel and the perpendicular shapes, respectively. Finally, a concise economic and environmental analysis is performed to study the proposed systems as solutions for domestic water heating applications, which highlights the suitability of PTCs for integration with future sustainable buildings.

Suggested Citation

  • Jihen Mahdhi & Fakher Hamdi & Hossein Ebadi & Abdallah Bouabidi & Ridha Ennetta & Laura Savoldi, 2025. "Experimental Study of a Stationary Parabolic Trough Collector with Modified Absorbers for Domestic Water Heating," Energies, MDPI, vol. 18(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3261-:d:1684575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    2. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    3. Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel, 2023. "New Evacuated Tube Solar Collector with Parabolic Trough Collector and Helical Coil Heat Exchanger for Usage in Domestic Water Heating," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    4. Bortolato, Matteo & Dugaria, Simone & Del Col, Davide, 2016. "Experimental study of a parabolic trough solar collector with flat bar-and-plate absorber during direct steam generation," Energy, Elsevier, vol. 116(P1), pages 1039-1050.
    5. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    6. Sokhansefat, Tahmineh & Kasaeian, Alibakhsh & Rahmani, Kiana & Heidari, Ameneh Haji & Aghakhani, Faezeh & Mahian, Omid, 2018. "Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions," Renewable Energy, Elsevier, vol. 115(C), pages 501-508.
    7. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    8. Gharzi, Mostafa & Kermani, Ali M. & Tash Shamsabadi, Hosseinali, 2023. "Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid," Renewable Energy, Elsevier, vol. 202(C), pages 270-279.
    9. Norouzi, Amir Mohammad & Siavashi, Majid & Khaliji Oskouei, MohammadHasan, 2020. "Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles," Renewable Energy, Elsevier, vol. 145(C), pages 569-584.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    3. Amit K. Bhakta & Nitesh K. Panday & Shailendra N. Singh, 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    5. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    6. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    7. Abdala, Antar M.M. & Elwekeel, Fifi N.M., 2024. "Investigation of the performance of a parabolic trough collector outfitted with annular absorber tubes," Renewable Energy, Elsevier, vol. 226(C).
    8. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    9. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    10. Stanek, Bartosz & Grzywnowicz, Krzysztof & Bartela, Łukasz & Węcel, Daniel & Uchman, Wojciech, 2021. "A system analysis of hybrid solar PTC-CPV absorber operation," Renewable Energy, Elsevier, vol. 174(C), pages 635-653.
    11. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    12. Mohammed, Hussein A. & Vuthaluru, Hari B. & Liu, Shaomin, 2022. "Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters," Renewable Energy, Elsevier, vol. 182(C), pages 401-426.
    13. Byiringiro, Justin & Chaanaoui, Meriem & Halimi, Mohammed, 2024. "Heat transfer enhancement of a parabolic trough solar collector using innovative receiver configurations combined with a hybrid nanofluid: CFD analysis," Renewable Energy, Elsevier, vol. 233(C).
    14. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    15. Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
    16. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    17. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    18. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    19. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    20. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3261-:d:1684575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.