IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003712.html
   My bibliography  Save this article

Pore-scale study of water and mass transport characteristic in anion exchange membrane fuel cells with anisotropic gas diffusion layer

Author

Listed:
  • Li, Fangju
  • Cai, Shanshan
  • Li, Song
  • Luo, Xiaobing
  • Tu, Zhengkai

Abstract

The complicated microporous structure and spatial distribution characteristics of the gas diffusion layer have crucial impacts on the water management of an anion-exchange membrane fuel cell, in which water is produced at the anode and consumed at the cathode. Consequently, a three-dimensional pore network model is developed to numerically simulate hydrogen transport and liquid water removal in the anode gas diffusion layer. Anisotropy is an important property of the gas diffusion layer, and the quasi-static two-phase transport within the anisotropic GDL is investigated from various perspectives. Pore-scale simulations demonstrate that the variation of the relative diffusion coefficient with saturation can be described as g(S)= (1-S)2.3, and the relative permeability varies with saturation in the range of S1.5 and S3. What's more, high anisotropy has a positive effect on both hydrogen and liquid water transport, if the anisotropy parameter is increased from 1 to 1.55, the relative diffusion coefficient and water permeability at all thicknesses are increased by more than 11% and 16%, respectively. However, in practice, high anisotropy is detrimental to the liquid water removal under the rib. Moreover, wettability distribution has a negligible effect on two-phase transport within the highly anisotropic GDL, while the effect of thickness remains significant.

Suggested Citation

  • Li, Fangju & Cai, Shanshan & Li, Song & Luo, Xiaobing & Tu, Zhengkai, 2024. "Pore-scale study of water and mass transport characteristic in anion exchange membrane fuel cells with anisotropic gas diffusion layer," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003712
    DOI: 10.1016/j.energy.2024.130599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.