IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019601.html
   My bibliography  Save this article

Water transport across the membrane of a direct toluene electro-hydrogenation electrolyzer: Experiments and modelling

Author

Listed:
  • Atienza-Márquez, Antonio
  • Oi, Shota
  • Araki, Takuto
  • Mitsushima, Shigenori

Abstract

Toluene/methylcyclohexane is a promising liquid organic hydride for hydrogen storage and transport under ambient conditions. Direct toluene electro-hydrogenation electrolyzers, utilizing proton exchange membrane technology, offer benefits in reducing the reversible decomposition voltage and eliminating theoretical heat losses associated with conventional hydrogenation methods. Nevertheless, water transport across the membrane can inhibit the supply of toluene to reaction sites at the cathode. This study investigates water transport across the Nafion™ 117 membrane of an in-house electrolyzer cell, employing sulfuric acid and toluene solutions as the anode and cathode reactant, respectively, and operating at current densities from 0.1 to 0.8 A/cm2. The experiments show that the cathode toluene concentration has a negligible effect on drag water, while water flux increases with electric current and decreases with higher anode sulfuric acid concentrations. The modelling approach assumes electro-osmosis and diffusion mechanisms govern water transport. Simulations predict a linear decrease in the electro-osmotic drag coefficient from 2.3 to 1.6 as the sulfuric acid concentration rises from 0.1 to 1.5 mol/L, while the back diffusion flux increases linearly up to 2 mg/(min·cm2). These findings closely align with experimental data and previous literature, despite the high complexity of water transport in polymer electrolyte membranes.

Suggested Citation

  • Atienza-Márquez, Antonio & Oi, Shota & Araki, Takuto & Mitsushima, Shigenori, 2024. "Water transport across the membrane of a direct toluene electro-hydrogenation electrolyzer: Experiments and modelling," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019601
    DOI: 10.1016/j.energy.2024.132186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Junghyun & Kwon, Obeen & Oh, Hyoun-Myoung & Jeong, Seokhun & So, Yoonho & Park, Gyutae & Jang, Hojae & Yang, Seonghyeon & Baek, Jiwon & Kim, Gyuhyeon & Park, Taehyun, 2024. "Optimizing design of catalyst layer structure with carbon-supported platinum weight ratio mixing method for proton exchange membrane fuel cells," Energy, Elsevier, vol. 291(C).
    2. Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
    3. Godinho, João & Hoefnagels, Ric & Braz, Catarina G. & Sousa, Ana M. & Granjo, José F.O., 2023. "An economic and greenhouse gas footprint assessment of international maritime transportation of hydrogen using liquid organic hydrogen carriers," Energy, Elsevier, vol. 278(PA).
    4. Chen, Lei & Chen, Yanyu & Tao, Wen-Quan, 2023. "Schroeder's paradox in proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Li, Fangju & Cai, Shanshan & Li, Song & Luo, Xiaobing & Tu, Zhengkai, 2024. "Pore-scale study of water and mass transport characteristic in anion exchange membrane fuel cells with anisotropic gas diffusion layer," Energy, Elsevier, vol. 293(C).
    6. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    7. Kumar, Alok & Muthukumar, P., 2022. "Experimental investigation on the poisoning characteristics of methane as impurity in La0.9Ce0.1Ni5 based hydrogen storage and purification system," Energy, Elsevier, vol. 259(C).
    8. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    9. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    10. Beckmann, Jonas & Klöckner, Kai & Letmathe, Peter, 2024. "Scenario-based multi-criteria evaluation of sector coupling-based technology pathways for decarbonization with varying degrees of disruption," Energy, Elsevier, vol. 297(C).
    11. d'Amore-Domenech, Rafael & Meca, Vladimir L. & Pollet, Bruno G. & Leo, Teresa J., 2023. "On the bulk transport of green hydrogen at sea: Comparison between submarine pipeline and compressed and liquefied transport by ship," Energy, Elsevier, vol. 267(C).
    12. Kannaiyan, Kumaran & Lekshmi, G.S. & Ramakrishna, Seeram & Kang, Misook & Kumaravel, Vignesh, 2023. "Perspectives for the green hydrogen energy-based economy," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyna-Peña, Fátima I. & Atienza-Márquez, Antonio & Jang, Sunpil & Shigemasa, Kaito & Shiono, Ryuhei & Nagasawa, Kensaku & Araki, Takuto & Mitsushima, Shigenori, 2025. "Hydrogen bubble transport of a direct toluene electro-hydrogenation electrolyzer visualized by synchrotron X-ray CT," Renewable Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Shuangjie & Jia, Guanwei & Xu, Weiqing & Hu, Shiwei & Li, Rui & Zhang, Xinjing & Cai, Maolin, 2025. "Analysis of the flow and condensation characteristics of hydrogen-blended natural gas containing water vapour in a regulating valve," Renewable Energy, Elsevier, vol. 248(C).
    2. Yan Zhang & Yanming Wan & Yanan Dong & Ruoyi Dong & Xiaoran Yin & Chen Fu & Yue Wang & Qingwei Li & Haoran Meng & Chuanbo Xu, 2025. "Economic Analysis of Supply Chain for Offshore Wind Hydrogen Production for Offshore Hydrogen Refueling Stations," Energies, MDPI, vol. 18(3), pages 1-18, January.
    3. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    4. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    5. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    6. Qin, Guojin & Zhang, Chao & Wang, Bohong & Ni, Pingan & Wang, Yihuan, 2025. "An interpretable machine learning model for failure pressure prediction of blended hydrogen natural gas pipelines containing a crack-in-dent defect," Energy, Elsevier, vol. 320(C).
    7. Ana-Maria Chirosca & Eugen Rusu & Viorel Minzu, 2024. "Green Hydrogen—Production and Storage Methods: Current Status and Future Directions," Energies, MDPI, vol. 17(23), pages 1-27, November.
    8. Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
    9. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    10. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    11. Huang, Zhenguang & Li, Chao & Chu, Yican & Gu, Jing & Li, Wenqing & Xie, Jiaxing & Gao, Ge & Wang, Haoyu & Fan, Meiqiang & Yao, Zhendong, 2025. "Potential and challenges for V-based solid solution hydrogen storage alloys," Energy, Elsevier, vol. 316(C).
    12. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    13. Tao, Xingxiao & Zeng, Zhen & Gao, Wei & Yan, Changzhi & Liu, Huaiyu & Sun, Kai & Che, Zhizhao & Wang, Tianyou, 2025. "Experimental study of cold start of PEM fuel cell with non-uniform metal foam flow field," Applied Energy, Elsevier, vol. 389(C).
    14. Barner, Lukas, 2024. "A multi-commodity partial equilibrium model of imperfect competition in future global hydrogen markets," Energy, Elsevier, vol. 311(C).
    15. Liu, Ji & Sun, Huai-de & Hu, Si-Han & Hu, Bin & Fang, Zhi-mo & Li, Ji-hong & Zhang, Zhen-xi & Lu, Qiang, 2024. "Hydrogen production from the steam reforming of biogas over Ni-based catalyst: The role of promoters and supports," Energy, Elsevier, vol. 311(C).
    16. Yamin, Zhang & El-Shafay, A.S. & Saraswat, Manish & Mahariq, Ibrahim & Alhomayani, Fahad Mohammed & Rajab, Husam & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Sillanpää, Mika, 2024. "Integrating solar-powered branched GAX cycle and claude cycle for producing liquid hydrogen: Comprehensive study using real data and optimization," Energy, Elsevier, vol. 312(C).
    17. Dana Laureen Laband & Martin Stöckl & Annedore Mittreiter & Uwe Holzhammer, 2025. "Barrier Analysis of Flexibilization of Cooling Supply Systems," Energies, MDPI, vol. 18(15), pages 1-33, August.
    18. Sorknæs, Peter & Thellufsen, Jakob Zinck & Knobloch, Kai & Engelbrecht, Kurt & Yuan, Meng, 2023. "Economic potentials of carnot batteries in 100% renewable energy systems," Energy, Elsevier, vol. 282(C).
    19. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    20. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.