IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000926.html
   My bibliography  Save this article

Assessment of a sustainable power generation system utilizing supercritical carbon dioxide working fluid: Thermodynamic, economic, and environmental analysis

Author

Listed:
  • Liu, Xiaoliang
  • Ma, Lianghua
  • Liu, Haoyang
  • Ashraf Talesh, Seyed Saman

Abstract

Solar energy stands out as one of the most abundant and cost-effective resources for energy conversion systems, playing a pivotal role in addressing the world's growing energy demands and environmental concerns. This study focuses on a power generation system that integrates multiple technologies for efficient energy conversion, including a parabolic solar trough collector unit, a supercritical carbon dioxide Brayton cycle, and two dual-pressure organic Rankine cycles. The goal is to assess this system from various angles, including energy, exergy, exergoeconomic, and exergoenvironmental aspects. The base mode study results reveal an overall energy efficiency of 16.66 %, exergy efficiency of 17.88 %, a total net power generation of 17.32 MW, a payback period of 4.38 years, and a total exergoenvironmental impact rate of 126.75 Pt/h. Additionally, the study conducts a parametric investigation to analyze how the system performs under different conditions and how changes in design parameters affect its main outputs. Furthermore, the study utilizes a multi-objective particle swarm optimization algorithm and a decision-maker method to identify the most desirable condition for the system's performance. Three optimization scenarios are considered, and various specific costs for electricity are evaluated to determine the payback period and net present value.

Suggested Citation

  • Liu, Xiaoliang & Ma, Lianghua & Liu, Haoyang & Ashraf Talesh, Seyed Saman, 2024. "Assessment of a sustainable power generation system utilizing supercritical carbon dioxide working fluid: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000926
    DOI: 10.1016/j.energy.2024.130321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.