IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035035.html
   My bibliography  Save this article

Atomistic insights into formaldehyde (HCHO) high-temperature treatment and syngas production via ReaxFF MD simulations

Author

Listed:
  • Yang, Yu
  • Kai, Reo
  • Watanabe, Hiroaki

Abstract

Formaldehyde (HCHO), typically known as an industrial waste gas, can be recycled to generate syngas. Our study focuses on the high-temperature and high-pressure treatment of formaldehyde, including pyrolysis, oxidation, and supercritical H2O/CO2 (scH2O/scCO2) co-pyrolysis via reactive molecular dynamics. Results showed that in the pyrolysis, the primary final products are H2 and CO. The formation of CO occurs through the double dehydrogenation of HCHO, and H-abstraction reaction leads to the formation of H2. In the oxidation, scH2O and scCO2 co-pyrolysis systems, the corresponding global reactions vary. HCHO can be oxidized to HCOOH, ultimately producing CO2. Another pathway for CO2 generation involves the formation of the COOH radical from CO. Oxidative treatment is more powerful in handling formaldehyde pollutants, while the supercritical condition is more effective in producing syngas. The order of carbon emission is oxidation > scH2O > pyrolysis. In the scCO2 system, scCO2 participates in the reaction, increasing CO production. Moreover, reaction kinetics models are proposed and agree well with experimental results. Under high-temperature conditions, the reaction rate in the oxidation system is the highest. Based on the activation energy for formaldehyde consumption and the energy barriers of the sub-reactions, the pyrolysis process is the easiest, whereas the oxidation process is the most difficult.

Suggested Citation

  • Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Atomistic insights into formaldehyde (HCHO) high-temperature treatment and syngas production via ReaxFF MD simulations," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035035
    DOI: 10.1016/j.energy.2024.133725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Reaction mechanism and light gas conversion in pyrolysis and oxidation of dimethyl ether (DME): A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 295(C).
    2. Xu, Tong & Wang, Chunbo & Hong, Dikun & Li, Song & Yue, Shuang, 2023. "The synergistic effect during co-combustion of municipal sludge and coal: Experimental and ReaxFF molecular dynamic study," Energy, Elsevier, vol. 262(PB).
    3. Liu, Xiaoliang & Ma, Lianghua & Liu, Haoyang & Ashraf Talesh, Seyed Saman, 2024. "Assessment of a sustainable power generation system utilizing supercritical carbon dioxide working fluid: Thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    2. Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
    3. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Su, Kun & Ouyang, Ziqu & Wang, Hongshuai & Ding, Hongliang & Zhang, Jinyang & Wang, Wenyu, 2024. "Effects of activated fuel and staged secondary air distributions on purification, combustion and NOx emission characteristics of pulverized coal with purification-combustion technology," Energy, Elsevier, vol. 302(C).
    5. Chunyu Liu & Changtao Yue & Yue Ma, 2024. "Pollutant Emissions and Heavy Metal Migration in Co-Combustion of Sewage Sludge and Coal," Energies, MDPI, vol. 17(11), pages 1-15, May.
    6. Vikash Singh & Seon Yeong Park & Eun Seo Lee & Jun Ho Choi & Chang Gyun Kim & Vimal Chandra Srivastava, 2024. "Investigation of co-combustion characteristics of distillery sludge and sugar mill waste: kinetics, synergy, and ash characterization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21217-21236, August.
    7. Shiwen Fang & Lifa Zhang & Shu Chen & Ziyuan Xie & Lanke Wang & Luyou Chen & Wei Liang & Pengfei Lei, 2024. "Study on the Co-Combustion Behavior of Municipal Sludge and Bagasse: Evaluation of Ultrasonic Pretreatment," Energies, MDPI, vol. 17(23), pages 1-15, November.
    8. Liu, Jiaxun & Yang, Xiuchao & Liu, Jianguo & Jiang, Xiumin, 2024. "Microscopic pyrolysis mechanisms of superfine pulverized coal based on TG-FTIR-MS and ReaxFF MD study," Energy, Elsevier, vol. 289(C).
    9. Su, Kun & Ouyang, Ziqu & Wang, Hongshuai & Zhang, Jinyang & Ding, Hongliang & Wang, Wenyu, 2024. "Experimental study on municipal sludge/coal co-combustion preheated by self-preheating burner: Self-preheating two-stage combustion and NOx emission characteristics," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.