Pollutant Emissions and Heavy Metal Migration in Co-Combustion of Sewage Sludge and Coal
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.
- Raclavská, Helena & Růžičková, Jana & Šafář, Michal & Kucbel, Marek & Slamová, Karolina & Švédová, Barbora & Juchelková, Dagmar & Kantor, Pavel, 2023. "Municipal sludges as sources of energy or nutrients – What is the best?," Energy, Elsevier, vol. 275(C).
- Puli Zhu & Xiaoyun Li & Jing Feng & Rui Zhang & Hui Bai & Duo Bu & Zeng Dan & Wei Li & Xuebin Lu, 2022. "Short-Chain Fatty Acids Production from Anaerobic Fermentation of Sewage Sludge: The Effect of Higher Levels Polyaluminium Chloride," IJERPH, MDPI, vol. 19(5), pages 1-12, February.
- Xu, Tong & Wang, Chunbo & Hong, Dikun & Li, Song & Yue, Shuang, 2023. "The synergistic effect during co-combustion of municipal sludge and coal: Experimental and ReaxFF molecular dynamic study," Energy, Elsevier, vol. 262(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
- Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
- Su, Kun & Ouyang, Ziqu & Wang, Hongshuai & Ding, Hongliang & Zhang, Jinyang & Wang, Wenyu, 2024. "Effects of activated fuel and staged secondary air distributions on purification, combustion and NOx emission characteristics of pulverized coal with purification-combustion technology," Energy, Elsevier, vol. 302(C).
- Ni, Zhanshi & Zhang, Yaokun & Liu, Xiang & Shi, Hao & Yao, Yurou & Tian, Junjian & Hu, Peng & He, Liqun & Lin, Qizhao & Meng, Kesheng, 2024. "Effect of furnace temperature and oxygen concentration on combustion and CO/NO emission characteristics of sewage sludge," Renewable Energy, Elsevier, vol. 234(C).
- Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
- Chen, Handing & Guo, Shunzhi & Song, Xudong & He, Tianbiao, 2024. "Design and evaluation of a municipal solid waste incineration power plant integrating with absorption heat pump," Energy, Elsevier, vol. 294(C).
- Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Atomistic insights into formaldehyde (HCHO) high-temperature treatment and syngas production via ReaxFF MD simulations," Energy, Elsevier, vol. 313(C).
- Weicheng Zheng & Yuchao Shao & Shulin Qin & Zhongquan Wang, 2024. "Future Directions of Sustainable Resource Utilization of Residual Sewage Sludge: A Review," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
- Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
- Marianna Czaplicka & Justyna Klyta & Bogusław Komosiński & Tomasz Konieczny & Katarzyna Janoszka, 2021. "Comparison of Carbonaceous Compounds Emission from the Co-Combustion of Coal and Waste in Boilers Used in Residential Heating in Poland, Central Europe," Energies, MDPI, vol. 14(17), pages 1-15, August.
- Li, Xiangguo & Li, Shuguo & Lv, Yang & Jiang, Wenguang & He, Chenhao & Hou, Shengju & Ma, Weinan & Dan, Jianming, 2024. "Study on thermal behavior and gas pollutant emission control during the co-combustion of rice straw-modified oily sludge and coal," Renewable Energy, Elsevier, vol. 230(C).
- Vikash Singh & Seon Yeong Park & Eun Seo Lee & Jun Ho Choi & Chang Gyun Kim & Vimal Chandra Srivastava, 2024. "Investigation of co-combustion characteristics of distillery sludge and sugar mill waste: kinetics, synergy, and ash characterization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21217-21236, August.
- Wendi Chen & Fei Wang & Altaf Hussain Kanhar, 2017. "Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis," Energies, MDPI, vol. 10(12), pages 1-11, December.
- Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
- Garikai T. Marangwanda & Daniel M. Madyira & Patrick G. Ndungu & Chido H. Chihobo, 2021. "Combustion Characterisation of Bituminous Coal and Pinus Sawdust Blends by Use of Thermo-Gravimetric Analysis," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Shiwen Fang & Lifa Zhang & Shu Chen & Ziyuan Xie & Lanke Wang & Luyou Chen & Wei Liang & Pengfei Lei, 2024. "Study on the Co-Combustion Behavior of Municipal Sludge and Bagasse: Evaluation of Ultrasonic Pretreatment," Energies, MDPI, vol. 17(23), pages 1-15, November.
- Wei, Daining & Zhang, Zhichao & Wu, Lining & Wang, Tao & Sun, Baomin, 2023. "Ammonia blend ratio impact on combustion characteristics and NOx emissions during co-firing with sludge and coal in a utility boiler," Energy, Elsevier, vol. 283(C).
- Liu, Xiang & Bi, Haobo & Tian, Junjian & Ni, Zhanshi & Shi, Hao & Yao, Yurou & Meng, Kesheng & Wang, Jian & Lin, Qizhao, 2024. "Thermogravimetric analysis of co-combustion characteristics of sewage sludge and bamboo scraps combined with artificial neural networks," Renewable Energy, Elsevier, vol. 226(C).
- Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
- Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
More about this item
Keywords
sewage sludge; coal; co-combustion; emission; heavy metals; migration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2457-:d:1398828. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.