IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025318.html
   My bibliography  Save this article

Modelling of large biomass and coal particle based on a novel C-DAEM: A numerical study on heat transfer and pyrolysis behavior

Author

Listed:
  • Chen, Rui
  • Cai, Jun
  • Li, Xinli
  • Lyu, Qinggang
  • Qi, Xiaobin

Abstract

Using two kinds of large-size fuel particles with thermal resistance, i.e., lignocellulosic biomass (Beech, BH) and Shenmu bituminous coal (SMBC), a comprehensive and systematic study on volatile evolution and temperature distribution history inside the particle was conducted in this work. The pyrolysis behaviors of BH and SMBC were characterized through a novel C-DAEM and traditional DAEM. Pyrolysis experiments of large biomass and coal particles were conducted in three different particle size ranges of two different heating temperatures. Results showed that C-DAEM was better than DAEM. Moreover, both particle size and heating temperature have an influence on overall temperature but through different ways. Thermal disturbance peak (TDP) existed in TDSC curves, while pyrolysis reaction peak (PRP) existed only in 773 K of BH. Particle size affected the overall temperature mainly by changing the thermal disturbance transfer time, e.g., TDP of BH-L1 happened in 27.3s, TDP of BH-L2 happened in 56.2s, and TDP of BH-L3 happened in 94.4s. Heating temperature affected the overall temperature mainly by directly changing the heat flux, e.g., time of TDP in BH-L3 and BH–H3 was nearly the same, while the corresponding peak value was consistent with the increase in heating temperature.

Suggested Citation

  • Chen, Rui & Cai, Jun & Li, Xinli & Lyu, Qinggang & Qi, Xiaobin, 2023. "Modelling of large biomass and coal particle based on a novel C-DAEM: A numerical study on heat transfer and pyrolysis behavior," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025318
    DOI: 10.1016/j.energy.2023.129137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.