IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302488x.html
   My bibliography  Save this article

Electric fleet charging management considering battery degradation and nonlinear charging profile

Author

Listed:
  • Shi, Junzhe
  • Zeng, Teng
  • Moura, Scott

Abstract

The populations of commercial electric vehicles (EVs) and electric robots (ERs) have been growing rapidly in recent years. Yet, the availabilities and incoordination of the charging infrastructure still constrain the operations of all EVs/ERs, resulting in wasted waiting time and, thus, decreased total profits. Coordinating these electric machines as a fleet and identifying the optimal operation and charging schedules to maximize total profit is essential. On the other hand, the charging process usually consists of two charging stages, constant current (CC) and constant voltage (CV), which lead to a nonlinear charging profile. Other factors, such as the high charging current, may significantly accelerate battery degradation and lead to capacity fade. However, the high nonlinearities make the battery charging profile and the degradation model computationally difficult to be integrated into optimization problems. In this study, we propose an innovative fleet management strategy that maximizes the operation revenue and minimizes the cost of electricity and battery degradation while addressing the aforementioned nonlinear charging profile. By proposing two linearization methods to replace the nonlinear parts, we formulated a Mixed-Integer Linear Program (MILP). Furthermore, stemming from the numerical case study, two managerial insights, the impact of the battery SOH on fleet management and the selection of fast charging vs. normal charging modes, are outlined.

Suggested Citation

  • Shi, Junzhe & Zeng, Teng & Moura, Scott, 2023. "Electric fleet charging management considering battery degradation and nonlinear charging profile," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302488x
    DOI: 10.1016/j.energy.2023.129094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302488X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302488x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.