IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223016389.html
   My bibliography  Save this article

Continuous flow extraction of biodiesel produced in a packed-bed reactor using supercritical carbon dioxide and tetrahydrofuran as solvents

Author

Listed:
  • Promraksa, Archw
  • Rakmak, Nirattisai
  • Schneider, Philip A.

Abstract

The concurrent process of biodiesel (FAME) extraction and triglyceride methanolysis was carried out by using supercritical carbon dioxide (SC–CO2) and tetrahydrofuran (THF). This study explored the integration of SC-CO2 extraction facilitated catalyst-free transesterification efficiently at low temperatures with practical biodiesel productivity. The work started with studying the transesterification kinetics of triglycerides using different molar ratios of methanol under various SC-CO2 conditions in the presence of THF solvent. The elementary second-order kinetics associated with the mass transfer limiting factor satisfied the experimental results from all different mixing ratios. A four-factorial Box-Behnken Design (BBD) coupled with the ANOVA was employed to optimize the FAME recovery by the reaction-extraction processes with continuous two streams of SC-CO2 and 10% v/v THF-methanol mixture. The optimum predicted FAME recovery was 95.47% w/w at 71.93 °C, 186.67 bar using the substrate ratio 12.16. The supercritical fluid-assisted dispersion feature was characterized through the Peclect number (Pe) obtained from the volumetric dispersion model (VDM). The Pe could indicate suitable substrate mixing for the process operation and design to enhance production efficiency. The feasibility of upscaling the process to the commercial level was proposed with preliminary economic consideration, which could suggest process improvements in further research and technological development.

Suggested Citation

  • Promraksa, Archw & Rakmak, Nirattisai & Schneider, Philip A., 2023. "Continuous flow extraction of biodiesel produced in a packed-bed reactor using supercritical carbon dioxide and tetrahydrofuran as solvents," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016389
    DOI: 10.1016/j.energy.2023.128244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ambat, Indu & Srivastava, Varsha & Iftekhar, Sidra & Haapaniemi, Esa & Sillanpää, Mika, 2020. "Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr–Al double oxides," Renewable Energy, Elsevier, vol. 146(C), pages 2158-2169.
    2. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    3. Sakdasri, Winatta & Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2018. "Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio," Energy, Elsevier, vol. 152(C), pages 144-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    2. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    5. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
    6. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    7. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    8. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    9. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    10. Go, Alchris Woo & Tran Nguyen, Phuong Lan & Huynh, Lien Huong & Liu, Ying-Tsung & Sutanto, Sylviana & Ju, Yi-Hsu, 2014. "Catalyst free esterification of fatty acids with methanol under subcritical condition," Energy, Elsevier, vol. 70(C), pages 393-400.
    11. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    12. Ng, Wendy Pei Qin & Lam, Hon Loong & Yusup, Suzana, 2013. "Supply network synthesis on rubber seed oil utilisation as potential biofuel feedstock," Energy, Elsevier, vol. 55(C), pages 82-88.
    13. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    14. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    15. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Ranjit, P.S. & Chintala, Venkateswarlu, 2022. "Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework," Energy, Elsevier, vol. 242(C).
    18. Kirill A. Zhichkin & Vladimir V. Nosov & Lyudmila N. Zhichkina & Elena A. Krasil’nikova & Olga K. Kotar & Yuri D. Shlenov & Galina V. Korneva & Anna A. Terekhova & Vadim G. Plyushchikov & Vladimir P. , 2022. "Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
    19. Yang, Po-Ming & Lin, Yuan-Chung & Lin, Kuang C. & Jhang, Syu-Ruei & Chen, Shang-Cyuan & Wang, Chia-Chi & Lin, Ying-Chi, 2015. "Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel," Energy, Elsevier, vol. 90(P1), pages 266-273.
    20. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.