IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223010976.html
   My bibliography  Save this article

Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrids

Author

Listed:
  • Hartani, Mohamed Amine
  • Rezk, Hegazy
  • Benhammou, Aissa
  • Hamouda, Messaoud
  • Abdelkhalek, Othmane
  • Mekhilef, Saad
  • Olabi, A.G.

Abstract

This paper proposes a decentralized multiple-Direct-Current-Microgrid (multi-DCMG) system to supply affordable load demands while addressing challenges posed by Hybridized-Energy-Storage-Systems (H-ESS) limitations, consumption/generation complexities, and renewables volatility. The paper's contributions include a system feasibility assessment for isolated users and a demonstration of the effectiveness of the control strategies adopted. To improve system resiliency and reliability, the proposed system adopts a high-control level for energy/power balances, using a Mamdani 50 rule-based Fuzzy Logic energy management system (FL-EMS) to supervise State-of-Charge (SoC) recovery. The low-control level manages/supervises DC-DC power converters' powers adopting Proportional-Integral (PI), Hysteresis-Current-Controller (HCC), and Linear-Quadratic-Regulator (LQR) in closed-Control-loops, besides an advanced low-pass-filtering (A-LPF) for load frequency decoupling. The results show that the proposed H-ESS outperformed single-ESS systems in dynamic load changes and renewables' uncertainty, and supercapacitors improved load supply, voltage regulation, and current tracking. However, expensive costs and slow restoration of H-ESS banks from critical SoCs are major drawbacks. The global system assessment demonstrated promising results through proper FL-EMS setpoint computation, stable Bus voltage with 0.55–6.9% deviations due to robust controllers, accurate SoC recovery of HESS batteries at critical SoCs (<10% and >90%), fast and accurate convergence with 3.35–3.37% mismatch, and 99.3% supply efficiency at minor power losses of 0.7–1.55%.

Suggested Citation

  • Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010976
    DOI: 10.1016/j.energy.2023.127703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).
    2. Obara, Shin’ya & Fujimoto, Shoki & Sato, Katsuaki & Utsugi, Yuta, 2021. "Planning renewable energy introduction for a microgrid without battery storage," Energy, Elsevier, vol. 215(PB).
    3. Wang, Chun & Xiong, Rui & He, Hongwen & Ding, Xiaofeng & Shen, Weixiang, 2016. "Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 612-622.
    4. Seydali Ferahtia & Ali Djeroui & Tedjani Mesbahi & Azeddine Houari & Samir Zeghlache & Hegazy Rezk & Théophile Paul, 2021. "Optimal Adaptive Gain LQR-Based Energy Management Strategy for Battery–Supercapacitor Hybrid Power System," Energies, MDPI, vol. 14(6), pages 1-16, March.
    5. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    6. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    7. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    8. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    9. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    10. Jaszczur, Marek & Hassan, Qusay, 2020. "An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption," Applied Energy, Elsevier, vol. 279(C).
    11. Armghan, Hammad & Yang, Ming & Ali, Naghmash & Armghan, Ammar & Alanazi, Abdulaziz, 2022. "Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid," Applied Energy, Elsevier, vol. 316(C).
    12. Adel Oubelaid & Hisham Alharbi & Abdullah S. Bin Humayd & Nabil Taib & Toufik Rekioua & Sherif S. M. Ghoneim, 2022. "Fuzzy-Energy-Management-Based Intelligent Direct Torque Control for a Battery—Supercapacitor Electric Vehicle," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    13. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2022. "Optimal Sizing and Management of Distributed Energy Resources in Smart Buildings," Energy, Elsevier, vol. 244(PB).
    14. Yang, Tongxu & Zhang, Limei & Zhen, Linteng & Liu, Yongfu & Song, Qianqian & Tang, Wei, 2021. "Fast microgrids formation of distribution network with high penetration of DERs considering reliability," Energy, Elsevier, vol. 236(C).
    15. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    16. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.
    17. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    18. Zehra, Syeda Shafia & Ur Rahman, Aqeel & Ahmad, Iftikhar, 2022. "Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation," Energy, Elsevier, vol. 239(PD).
    19. Rahnama, Alireza & Shayeghi, Hossein & Dejamkhooy, Abdolmajid & Bizon, Nicu, 2022. "A cost-technical profit-sharing approach for optimal energy management of a multi-microgrid distribution system," Energy, Elsevier, vol. 261(PB).
    20. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J., 2019. "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency," Energy, Elsevier, vol. 186(C).
    21. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    22. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    23. Ahmadi Jirdehi, Mehdi & Sohrabi Tabar, Vahid, 2023. "Risk-aware energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources high penetration, crypto-currency miners and responsive loads," Energy, Elsevier, vol. 263(PA).
    24. Andre T. Puati Zau & Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2022. "A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles," Energies, MDPI, vol. 15(7), pages 1-29, April.
    25. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    26. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    27. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    28. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    29. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    30. Guichi, A. & Mekhilef, S. & Berkouk, E.M. & Talha, A., 2021. "Optimal control of grid-connected microgrid PV-based source under partially shaded conditions," Energy, Elsevier, vol. 230(C).
    31. Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
    32. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    4. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    6. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    7. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    8. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    9. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    10. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    11. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    12. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    13. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    14. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    15. Bingyin Lei & Yue Ren & Huiyu Luan & Ruonan Dong & Xiuyuan Wang & Junli Liao & Shu Fang & Kaiye Gao, 2023. "A Review of Optimization for System Reliability of Microgrid," Mathematics, MDPI, vol. 11(4), pages 1-30, February.
    16. Hakimi, Seyed Mehdi & Hasankhani, Arezoo & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Stochastic planning of a multi-microgrid considering integration of renewable energy resources and real-time electricity market," Applied Energy, Elsevier, vol. 298(C).
    17. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    18. Maximiliano Lainfiesta Herrera & Hassan S. Hayajneh & Xuewei Zhang, 2021. "DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure," Energies, MDPI, vol. 14(22), pages 1-8, November.
    19. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    20. Qiao, Sen & Guo, Zi Xin & Tao, Zhang & Ren, Zheng Yu, 2023. "Analyzing the network structure of risk transmission among renewable, non-renewable energy and carbon markets," Renewable Energy, Elsevier, vol. 209(C), pages 206-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.