IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222026056.html
   My bibliography  Save this article

Risk-aware energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources high penetration, crypto-currency miners and responsive loads

Author

Listed:
  • Ahmadi Jirdehi, Mehdi
  • Sohrabi Tabar, Vahid

Abstract

The penetration of renewable resources and electric vehicles has increased in recent years due to various benefits such as reducing environmental pollution. This paper optimizes the energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources and crypto-currency miners as an emerging critical load with high energy consumption. In such structures, the fluctuation of renewable energies decreases reliability and increases energy market trading. Hence, the conditional value-at-risk index is utilized to analyze the risk of uncertainties. Furthermore, the influence of responsive local loads and incoming vehicles into the stations is investigated using demand response programs. In order to implement the presented programming, a real distribution network in Kermanshah, Iran, is selected as the case study. The results show that the risk-averse strategy with α = 0.85 and β = 0.8, reduces the expected revenue by about 636.355 $ compared to the risk-neutral strategy. In addition, the swapping station can be used as a bulk storage, where it stores about 43.56 MWh in low-price times and injects about 20.04 MWh in high-price times to support the local system. The demand side management also increases the revenue even under the worst-case conditions by about 79.623 $.

Suggested Citation

  • Ahmadi Jirdehi, Mehdi & Sohrabi Tabar, Vahid, 2023. "Risk-aware energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources high penetration, crypto-currency miners and responsive loads," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026056
    DOI: 10.1016/j.energy.2022.125719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    2. Yanni Liang & Xingping Zhang & Jian Xie & Wenfeng Liu, 2017. "An Optimal Operation Model and Ordered Charging/Discharging Strategy for Battery Swapping Stations," Sustainability, MDPI, vol. 9(5), pages 1-18, April.
    3. Wu, Chuantao & Lin, Xiangning & Sui, Quan & Wang, Zhixun & Feng, Zhongnan & Li, Zhengtian, 2021. "Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets," Applied Energy, Elsevier, vol. 283(C).
    4. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    5. Mehrjerdi, Hasan, 2021. "Resilience oriented vehicle-to-home operation based on battery swapping mechanism," Energy, Elsevier, vol. 218(C).
    6. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    7. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    8. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    9. Jiao, Feixiang & Zou, Yuan & Zhang, Xudong & Zhang, Bin, 2022. "Online optimal dispatch based on combined robust and stochastic model predictive control for a microgrid including EV charging station," Energy, Elsevier, vol. 247(C).
    10. Max J. Krause & Thabet Tolaymat, 2018. "Author Correction: Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(12), pages 814-814, December.
    11. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    12. Wang, Shubin & Li, Jiabao & Liu, Xinni & Zhao, Erlong & Eghbalian, Nasrin, 2022. "Multi-level charging stations for electric vehicles by considering ancillary generating and storage units," Energy, Elsevier, vol. 247(C).
    13. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    14. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    2. Feng, Jiawei & Hou, Shengya & Yu, Lijun & Dimov, Nikolay & Zheng, Pei & Wang, Chunping, 2020. "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging," Applied Energy, Elsevier, vol. 264(C).
    3. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    4. Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023. "Interdependence of clean energy and green markets with cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    5. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    6. Ye, Wang & Wong, Wing-Keung & Arnone, Gioia & Nassani, Abdelmohsen A. & Haffar, Mohamed & Faiz, Muhammad Fauzinudin, 2023. "Crypto currency and green investment impact on global environment: A time series analysis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 155-169.
    7. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    8. Maria Grazia Marchesano & Guido Guizzi & Silvestro Vespoli & Gabriella Ferruzzi, 2023. "Battery Swapping Station Service in a Smart Microgrid: A Multi-Method Simulation Performance Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    9. Fatih Ecer & Tolga Murat & Hasan Dinçer & Serhat Yüksel, 2024. "A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    10. Lisha, Liu & Mousa, Saeed & Arnone, Gioia & Muda, Iskandar & Huerta-Soto, Rosario & Shiming, Zhai, 2023. "Natural resources, green innovation, fintech, and sustainability: A fresh insight from BRICS," Resources Policy, Elsevier, vol. 80(C).
    11. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Cooperative operation of battery swapping stations and charging stations with electricity and carbon trading," Energy, Elsevier, vol. 254(PA).
    12. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    13. Chunling Li & Nosherwan Khaliq & Leslie Chinove & Usama Khaliq & József Popp & Judit Oláh, 2023. "Cryptocurrency Acceptance Model to Analyze Consumers’ Usage Intention: Evidence From Pakistan," SAGE Open, , vol. 13(1), pages 21582440231, March.
    14. Sarker, Provash Kumer & Lau, Chi Keung Marco & Pradhan, Ashis Kumar, 2023. "Asymmetric effects of climate policy uncertainty and energy prices on bitcoin prices," Innovation and Green Development, Elsevier, vol. 2(2).
    15. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2022. "A Stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response," Applied Energy, Elsevier, vol. 317(C).
    16. Abakah, Emmanuel Joel Aikins & Wali Ullah, GM & Adekoya, Oluwasegun B. & Osei Bonsu, Christiana & Abdullah, Mohammad, 2023. "Blockchain market and eco-friendly financial assets: Dynamic price correlation, connectedness and spillovers with portfolio implications," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 218-243.
    17. Asif, Muhammad & Searcy, Cory & Castka, Pavel, 2023. "ESG and Industry 5.0: The role of technologies in enhancing ESG disclosure," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    18. Le, Thanh Ha, 2023. "Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts," Renewable Energy, Elsevier, vol. 202(C), pages 613-625.
    19. Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
    20. Élise Alfieri & Yann Ferrat, 2022. "The larger compensation for miners, the higher positive effect on the financial performance of cryptocurrencies [Une meilleure rémunération des mineurs : un effet positif sur la performance financi," Post-Print hal-03670074, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222026056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.