IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315796.html
   My bibliography  Save this article

Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization

Author

Listed:
  • Sadeghi, Delnia
  • Hesami Naghshbandy, Ali
  • Bahramara, Salah

Abstract

In this paper, the optimal sizing problem of the micro-grid’s resources in two different modes in the presence of the electric vehicle using the multi-objective particle swarm optimization algorithm is investigated. In this regard, the uncertain behavior of the electric vehicle is modeled using the Monte Carlo Simulation. In the first case named as PV/wind/battery, the optimum number of components and the amount of cost at different levels of reliability are determined. Then, the electric vehicle is added to the system regarding which the loss of power supply probability is recalculated in the both deterministic and stochastic states. The results show that the electric vehicle increases the system reliability. In the second system named as PV/wind/battery/EV, the effect of deterministic and stochastic behavior of electric vehicle on the number of components and the loss of power supply probability was investigated for the first time. The results demonstrated that the design of both systems is feasible, but the first system was more efficient than the second, because the latter used more winds in a number of identical LPSPs. Moreover, sensitivity analysis has been performed to show the effect of wind speed and load parameters on decision variables.

Suggested Citation

  • Sadeghi, Delnia & Hesami Naghshbandy, Ali & Bahramara, Salah, 2020. "Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315796
    DOI: 10.1016/j.energy.2020.118471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    2. Ould Bilal, B. & Sambou, V. & Ndiaye, P.A. & Kébé, C.M.F. & Ndongo, M., 2010. "Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)," Renewable Energy, Elsevier, vol. 35(10), pages 2388-2390.
    3. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    4. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Khan, Faizan A. & Pal, Nitai & Saeed, Syed.H., 2018. "Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 937-947.
    6. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    7. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    8. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    9. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    10. Maheri, Alireza, 2014. "Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties," Renewable Energy, Elsevier, vol. 66(C), pages 650-661.
    11. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    12. Azimoh, Chukwuma Leonard & Klintenberg, Patrik & Mbohwa, Charles & Wallin, Fredrik, 2017. "Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa," Renewable Energy, Elsevier, vol. 106(C), pages 222-231.
    13. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    14. Semaria Ruiz & Julian Patiño & Alejandro Marquez-Ruiz & Jairo Espinosa & Eduardo Duque & Paola Ortiz, 2019. "Optimal Design of a Diesel-PV-Wind-Battery-Hydro Pumped POWER system with the Integration of ELECTRIC vehicles in a Colombian Community," Energies, MDPI, vol. 12(23), pages 1-19, November.
    15. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    16. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    17. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    18. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    19. Hafez, Omar & Bhattacharya, Kankar, 2017. "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Elsevier, vol. 107(C), pages 576-589.
    20. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    21. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    22. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    23. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    24. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    25. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohtasim, Md. Shahriar & Das, Barun K. & Paul, Utpol K. & Kibria, Md. Golam & Hossain, Md Sanowar, 2025. "Hybrid renewable multi-generation system optimization: Attaining sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    4. Motamedisedeh, Omid & Omrani, Sara & Karim, Azharul & Drogemuller, Robin & Walker, Geoffrey, 2025. "A comprehensive review of optimum integration of photovoltaic-based energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    5. Saxena, Vivek & Kumar, Narendra & Manna, Saibal & Rajput, Saurabh Kumar & Agarwal, Kusum Lata & Diwania, Sourav & Gupta, Varun, 2025. "Modelling, solution and application of optimization techniques in HRES: From conventional to artificial intelligence," Applied Energy, Elsevier, vol. 380(C).
    6. Adoum Abdoulaye, Mahamat & Waita, Sebastian & Wabuge Wekesa, Cyrus & Mwabora, Julius Mwakondo, 2024. "Optimal sizing of an off-grid and grid-connected hybrid photovoltaic-wind system with battery and fuel cell storage system: A techno-economic, environmental, and social assessment," Applied Energy, Elsevier, vol. 365(C).
    7. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    9. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    10. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    11. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    14. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    15. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    16. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    17. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
    18. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    19. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    20. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.