IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221031728.html
   My bibliography  Save this article

Novel thermal conductivity enhancing containers for performance enhancement of solar photovoltaics system integrated with phase change material

Author

Listed:
  • Khanna, Sourav
  • Singh, Preeti
  • Mudgal, Vijay
  • Newar, Sanjeev
  • Sharma, Vashi
  • Becerra, Victor
  • Reddy, K.S.
  • Mallick, Tapas K.

Abstract

Phase change material (PCM) has capability to increase the power production of solar photovoltaics (PV) by effective temperature regulation. In this work, Thermal Conductivity Enhancing Containers (TCEC) are proposed. They allow the PCM to extract the heat from all sides of the containers instead of only front which improves the thermal conductivity of the PCM containers and increases the PV electrical efficiency. PCM was filled inside the TCECs and pasted at the back of the PV. Systems with and without PCM, with and without TCEC and systems with different tilt angles have been investigated. The melting of PCM, rate of thermal energy storage, charging efficiency and enhancement in PV performance are analyzed. The behavior of the systems is analyzed for the climates of Portsmouth, UK and Chennai, India. It is seen that the average charging efficiency of PCM can be increased from 49% to 62% using proposed TCEC. Moreover, the average rate of thermal energy storage can be increased from 249 W/m2 of aperture to 302 W/m2 and the PV electrical efficiency can be increased from 17.6% to 19.2% using TCEC-PCM. It is also seen that as the inclination of PCM container decreases from 45° to 0°, the charging efficiency decreases by 32%.

Suggested Citation

  • Khanna, Sourav & Singh, Preeti & Mudgal, Vijay & Newar, Sanjeev & Sharma, Vashi & Becerra, Victor & Reddy, K.S. & Mallick, Tapas K., 2022. "Novel thermal conductivity enhancing containers for performance enhancement of solar photovoltaics system integrated with phase change material," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221031728
    DOI: 10.1016/j.energy.2021.122923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
    2. Jamil, Furqan & Ali, Hafiz Muhammad & Nasir, Muhammad Ali & Karahan, Mehmet & Janjua, M.M. & Naseer, Ammar & Ejaz, Ali & Pasha, Riffat Asim, 2021. "Evaluation of photovoltaic panels using different nano phase change material and a concise comparison: An experimental study," Renewable Energy, Elsevier, vol. 169(C), pages 1265-1279.
    3. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).
    4. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    5. Abdollahi, Nasrin & Rahimi, Masoud, 2020. "Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 302-309.
    6. Nada, S.A. & El-Nagar, D.H., 2018. "Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules," Renewable Energy, Elsevier, vol. 127(C), pages 630-641.
    7. Singh, Preeti & Khanna, Sourav & Becerra, Victor & Newar, Sanjeev & Sharma, Vashi & Mallick, Tapas K. & Hutchinson, David & Radulovic, Jovana & Khusainov, Rinat, 2020. "Power improvement of finned solar photovoltaic phase change material system," Energy, Elsevier, vol. 193(C).
    8. Waqas, Adeel & Ji, Jie & Xu, Lijie & Ali, Majid & Zeashan, & Alvi, Jahanzeb, 2018. "Thermal and electrical management of photovoltaic panels using phase change materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 254-271.
    9. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    10. Singh, Preeti & Mudgal, Vijay & Khanna, Sourav & Mallick, Tapas K. & Reddy, K.S., 2020. "Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    3. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    4. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    5. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    7. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    8. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    9. Singh, Preeti & Mudgal, Vijay & Khanna, Sourav & Mallick, Tapas K. & Reddy, K.S., 2020. "Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers," Energy, Elsevier, vol. 205(C).
    10. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    11. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Gan, Guohui & Xiang, Yetao, 2020. "Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 12-22.
    13. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    15. Nižetić, Sandro & Jurčević, Mišo & Arıcı, Müslüm & Arasu, A. Valan & Xie, Gongnan, 2020. "Nano-enhanced phase change materials and fluids in energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    16. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    17. Govindasamy, Dhanusiya & Kumar, Ashwani, 2023. "Experimental analysis of solar panel efficiency improvement with composite phase change materials," Renewable Energy, Elsevier, vol. 212(C), pages 175-184.
    18. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    19. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    20. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221031728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.