IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221027511.html
   My bibliography  Save this article

Simulation and impact analysis of behavioral and socioeconomic dimensions of energy consumption

Author

Listed:
  • Ghofrani, Ali
  • Zaidan, Esmat
  • Abulibdeh, Ammar

Abstract

Human-oriented factors present unavoidable challenges and uncertainties in building energy strategic planning. The uncertainties escalate when the target society is not fully known to the decision-maker and can create performance gaps between the expected and actual outcomes of sustainability targets. This article aims to investigate the role of socioeconomic and behavioral dimensions in residential energy consumption patterns among regions that host high proportions of migrant communities with diverse cultural and ethnic traits. This study evaluates the patterns in human-building interactions and energy behaviors among local and migrant communities based on empirical evidence and survey analysis. The survey data are investigated via machine learning approaches to identify the interdependencies between and feature importance of critical factors that influence human-building interactions and to determine elements that help to discern the energy behavior of locals and migrants. A simulation analysis is conducted to analyze residential energy consumption under different human indoor thermal comfort preferences in multiple case scenarios to demonstrate how improvements in human-building interaction can create saving opportunities. The findings capture the main socioeconomic and behavioral contributors in residential energy consumption and demonstrate the impact of human factor at a high level in regions with imbalanced demographics and societies in transition.

Suggested Citation

  • Ghofrani, Ali & Zaidan, Esmat & Abulibdeh, Ammar, 2022. "Simulation and impact analysis of behavioral and socioeconomic dimensions of energy consumption," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027511
    DOI: 10.1016/j.energy.2021.122502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Villca-Pozo, Milenka & Gonzales-Bustos, Juan Pablo, 2019. "Tax incentives to modernize the energy efficiency of the housing in Spain," Energy Policy, Elsevier, vol. 128(C), pages 530-538.
    3. Rodgers, Mark & Coit, David & Felder, Frank & Carlton, Annmarie, 2019. "Assessing the effects of power grid expansion on human health externalities," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 92-104.
    4. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    5. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    6. Labanca, Nicola & Bertoldi, Paolo, 2018. "Beyond energy efficiency and individual behaviours: policy insights from social practice theories," Energy Policy, Elsevier, vol. 115(C), pages 494-502.
    7. Juan Uribe-Toril & José Luis Ruiz-Real & Juan Milán-García & Jaime de Pablo Valenciano, 2019. "Energy, Economy, and Environment: A Worldwide Research Update," Energies, MDPI, vol. 12(6), pages 1-19, March.
    8. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    10. Paul C. Stern & Benjamin K. Sovacool & Thomas Dietz, 2016. "Towards a science of climate and energy choices," Nature Climate Change, Nature, vol. 6(6), pages 547-555, June.
    11. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    12. Abulibdeh, Ammar, 2021. "Spatiotemporal analysis of water-electricity consumption in the context of the COVID-19 pandemic across six socioeconomic sectors in Doha City, Qatar," Applied Energy, Elsevier, vol. 304(C).
    13. Todd Gerarden & Richard G. Newell & Robert N. Stavins, 2015. "Deconstructing the Energy-Efficiency Gap: Conceptual Frameworks and Evidence," American Economic Review, American Economic Association, vol. 105(5), pages 183-186, May.
    14. Gliedt, Travis & Hoicka, Christina E., 2015. "Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance," Applied Energy, Elsevier, vol. 147(C), pages 430-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouladvand, Javanshir, 2022. "Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "How to Encourage Energy Savings Behaviours? The Most Effective Incentives from the Perspective of European Consumers," Energies, MDPI, vol. 14(23), pages 1-25, November.
    2. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    3. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    4. Huaccha, Gissell, 2023. "Regional persistence of the energy efficiency gap: Evidence from England and Wales," Energy Economics, Elsevier, vol. 127(PA).
    5. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    6. Ibolya Czibere & Imre Kovách & Gergely Boldizsár Megyesi, 2020. "Environmental Citizenship and Energy Efficiency in Four European Countries (Italy, The Netherlands, Switzerland and Hungary)," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    7. Eka Sudarmaji & Sri Ambarwati & Mira Munira, 2022. "Measurement of the Rebound Effect on Urban Household Energy Consumption Savings," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 88-100, September.
    8. Ali Ghofrani & Esmat Zaidan & Mohsen Jafari, 2021. "Reshaping energy policy based on social and human dimensions: an analysis of human-building interactions among societies in transition in GCC countries," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-26, December.
    9. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2019. "A large-scale test of the effects of time discounting, risk aversion, loss aversion, and present bias on household adoption of energy-efficient technologies," Energy Economics, Elsevier, vol. 80(C), pages 377-393.
    10. Knuutila, Mirika & Vuorio, Anna, 2023. "Temporal-orientation in organizational decision-making: Factors affecting willingness to execute energy efficiency investments in business premises," Energy, Elsevier, vol. 271(C).
    11. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.
    12. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    13. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    14. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    15. Thonipara, Anita & Runst, Petrik & Ochsner, Christian & Bizer, Kilian, 2019. "Energy efficiency of residential buildings in the European Union – An exploratory analysis of cross-country consumption patterns," Energy Policy, Elsevier, vol. 129(C), pages 1156-1167.
    16. Chaudhuri, Kausik & Huaccha, Gissell, 2023. "Who bears the energy cost? Local income deprivation and the household energy efficiency gap," Energy Economics, Elsevier, vol. 127(PA).
    17. Ke, Jing & Khanna, Nina & Zhou, Nan, 2022. "Indirect estimation of willingness to pay for energy technology adoption," Applied Energy, Elsevier, vol. 312(C).
    18. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    19. Luiz de Mello, 2023. "Real Estate in a Post-Pandemic World: How Can Policies Make Housing More Enviromentally Sustainable and Affordable?," Hacienda Pública Española / Review of Public Economics, IEF, vol. 244(1), pages 111-139, March.
    20. Ante Busic-Sontic & Franz Fuerst, 2017. "The Personality Profiles of Early Adopters of Energy-Efficient Technology," SOEPpapers on Multidisciplinary Panel Data Research 924, DIW Berlin, The German Socio-Economic Panel (SOEP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.