IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019642.html
   My bibliography  Save this article

Multi-objective robust optimization of a solar power tower plant under uncertainty

Author

Listed:
  • Luo, Yan
  • Wang, Zhiyuan
  • Zhu, Jiamin
  • Lu, Tao
  • Xiao, Gang
  • Chu, Fengming
  • Wang, Ruixing

Abstract

The optimal design of a molten salt solar power tower (SPT) plant is sensitive to the variations of uncertainties, such as solar radiation, which result in dispersion of the model output. To mitigate the impacts of uncertainties on the thermo-economic performance of SPT plant, this study develops an uncertainty-based multi-objective robust optimization design method for the case of a SPT plant in Sevilla with the expected value (i.e. the average energy cost) and the standard deviation (i.e. the dispersion of the model output) of the levelized cost of energy (LCOE) as the objectives. The Monte Carlo (MC) simulation and simulated annealing (SA) algorithm are combined to solve the robust optimization problem. The results of Pareto frontier indicate that a trade-off is needed through decision-making. The final optimal solution is determined with expectation of LCOE of 23.09 c/kWhe and standard deviation of LCOE of 1.25 c/kWhe. Compared with the deterministic optimal design, the standard deviation of LCOE of the multi-objective robust optimum is reduced by 17.22 %, which turns out to be less sensitive to the uncertainties. Moreover, the Sobol’ global sensitivity analysis results show that the direct solar radiation, heliostat field cost and receiver cost are the most sensitive to LCOE.

Suggested Citation

  • Luo, Yan & Wang, Zhiyuan & Zhu, Jiamin & Lu, Tao & Xiao, Gang & Chu, Fengming & Wang, Ruixing, 2022. "Multi-objective robust optimization of a solar power tower plant under uncertainty," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019642
    DOI: 10.1016/j.energy.2021.121716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    2. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    3. Carrizosa, E. & Domínguez-Bravo, C. & Fernández-Cara, E. & Quero, M., 2015. "Optimization of multiple receivers solar power tower systems," Energy, Elsevier, vol. 90(P2), pages 2085-2093.
    4. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    5. Silva, R. & Pérez, M. & Berenguel, M. & Valenzuela, L. & Zarza, E., 2014. "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications," Applied Energy, Elsevier, vol. 121(C), pages 233-244.
    6. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    7. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    8. Yang, Honglun & Li, Jing & Huang, Yihang & Kwan, Trevor Hocksun & Cao, Jingyu & Pei, Gang, 2020. "Feasibility research on a hybrid solar tower system using steam and molten salt as heat transfer fluid," Energy, Elsevier, vol. 205(C).
    9. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.
    10. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    11. Serafino, Aldo & Obert, Benoit & Vergé, Léa & Cinnella, Paola, 2020. "Robust optimization of an organic Rankine cycle for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 1120-1129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Asad & Farrukh Ibne Mahmood & Ilaria Baffo & Alessandro Mauro & Antonella Petrillo, 2022. "The Cost Benefit Analysis of Commercial 100 MW Solar PV: The Plant Quaid-e-Azam Solar Power Pvt Ltd," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
    2. Wang, Yize & Liu, Zhenqing, 2024. "A bionic design of oscillating wave surge energy converter based on scallops," Energy, Elsevier, vol. 304(C).
    3. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    4. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    5. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    6. Chuan Qin & Yuqing Jin & Meng Tian & Ping Ju & Shun Zhou, 2023. "Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification," Energies, MDPI, vol. 16(16), pages 1-21, August.
    7. Arrif, Toufik & Hassani, Samir & Guermoui, Mawloud & Sánchez-González, A. & A.Taylor, Robert & Belaid, Abdelfetah, 2022. "GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design," Renewable Energy, Elsevier, vol. 192(C), pages 745-758.
    8. Yuanhui, Wang & Liqiang, Duan & Shuaiyu, Ji & Jiaping, Guo & Hanfei, Zhang & Ming, Yang & Xingqi, Ding, 2024. "Optimization study of a high-proportion of solar tower aided coal-fired power generation system integrated with thermal energy storage," Energy, Elsevier, vol. 307(C).
    9. Mohamed A. M. Shaheen & Zia Ullah & Mohammed H. Qais & Hany M. Hasanien & Kian J. Chua & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    3. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    4. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    5. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    6. Han, Liyan & Liu, Yang & Lin, Qiang & Huang, Gubo, 2015. "Valuing carbon assets for high-tech with application to the wind energy industry," Energy Policy, Elsevier, vol. 87(C), pages 347-358.
    7. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    8. Carrizosa, E. & Domínguez-Bravo, C. & Fernández-Cara, E. & Quero, M., 2015. "Optimization of multiple receivers solar power tower systems," Energy, Elsevier, vol. 90(P2), pages 2085-2093.
    9. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    10. Qureshy, Ali M.M.I. & Dincer, Ibrahim, 2020. "Energy and exergy analyses of an integrated renewable energy system for hydrogen production," Energy, Elsevier, vol. 204(C).
    11. Liu, Changtian & Du, Mingsheng & Zhou, Ruiwen & Wang, Hang & Ling, Xiang & Hu, Yige, 2022. "Experimental investigation on thermal characteristics of a novel mesh flat-plate heat receiver in a solar power tower system," Energy, Elsevier, vol. 242(C).
    12. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    13. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    14. Samaniego Rascón, Danyela & Ferreira, Almerindo D. & Gameiro da Silva, Manuel, 2017. "Cumulative and momentary skin exposures to solar radiation in central receiver solar systems," Energy, Elsevier, vol. 137(C), pages 336-349.
    15. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    16. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    17. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    18. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    19. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    20. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.