IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp336-349.html
   My bibliography  Save this article

Cumulative and momentary skin exposures to solar radiation in central receiver solar systems

Author

Listed:
  • Samaniego Rascón, Danyela
  • Ferreira, Almerindo D.
  • Gameiro da Silva, Manuel

Abstract

On account of the scarcity of fossil fuels and the environmental problems arising from its use and exploitation, countries are opting for developing technologies based on renewable sources as alternatives to achieve the growing energy demand. Among the renewable energy technologies, solar energy seems to be an attractive solution. Usually solar power plants are located in sunny environments due to requirements for power generation. Meanwhile, as the ozone layer damage has been exceeding its natural restoration, a growing level of UV radiation reaches the surface of the earth where the solar industry working public will be facing new risks; among them skin risks. The present paper, focusing on the proper usage of the renewable source, aims to assess skin exposures to solar radiation within solar industry. The assessment was based on direct solar radiation measurements carried out in an experimental solar facility in Mexico. The maximum time to stay unprotected without receiving a noticeable impact on skin is calculated and security measures for solar industry workers are suggested. This research may be seen as a basic evidence of an area within solar industry with improvement opportunities and assist the development of security procedures applicable to solar energy plants' working environments.

Suggested Citation

  • Samaniego Rascón, Danyela & Ferreira, Almerindo D. & Gameiro da Silva, Manuel, 2017. "Cumulative and momentary skin exposures to solar radiation in central receiver solar systems," Energy, Elsevier, vol. 137(C), pages 336-349.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:336-349
    DOI: 10.1016/j.energy.2017.02.170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Błażejczyk Krzysztof & Baranowski Jarosław & Błażejczyk Anna, 2014. "Heat stress and occupational health and safety – spatial and temporal differentiation," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 18(1), pages 61-67, March.
    2. Wiser, Ryan & Millstein, Dev & Mai, Trieu & Macknick, Jordan & Carpenter, Alberta & Cohen, Stuart & Cole, Wesley & Frew, Bethany & Heath, Garvin, 2016. "The environmental and public health benefits of achieving high penetrations of solar energy in the United States," Energy, Elsevier, vol. 113(C), pages 472-486.
    3. Comodi, Gabriele & Renzi, Massimiliano & Rossi, Mosè, 2016. "Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets," Energy, Elsevier, vol. 109(C), pages 1-12.
    4. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
    5. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    6. Ahmadi, Mohammad H. & Hosseinzade, Hadi & Sayyaadi, Hoseyn & Mohammadi, Amir H. & Kimiaghalam, Farshad, 2013. "Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss," Renewable Energy, Elsevier, vol. 60(C), pages 313-322.
    7. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    8. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    9. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    10. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    11. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    12. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    13. Fluri, Thomas P., 2009. "The potential of concentrating solar power in South Africa," Energy Policy, Elsevier, vol. 37(12), pages 5075-5080, December.
    14. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    15. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    6. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    7. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    8. Zhou, Xin & Xu, Haoran & Xiang, Duo & Chen, Jinli & Xiao, Gang, 2022. "Design and modeling of a honeycomb ceramic thermal energy storage for a solar thermal air-Brayton cycle system," Energy, Elsevier, vol. 239(PD).
    9. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Hakimi, M. & Baniasadi, E. & Afshari, E., 2020. "Thermo-economic analysis of photovoltaic, central tower receiver and parabolic trough power plants for Herat city in Afghanistan," Renewable Energy, Elsevier, vol. 150(C), pages 840-853.
    11. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    12. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    13. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    14. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    15. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    16. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    17. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    18. Pedro Cerezal-Mezquita & Waldo Bugueño-Muñoz, 2022. "Drying of Carrot Strips in Indirect Solar Dehydrator with Photovoltaic Cell and Thermal Energy Storage," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    19. Gamil, Ahmed & Li, Peiwen & Ali, Babkir & Hamid, Mohamed Ali, 2022. "Concentrating solar thermal power generation in Sudan: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:336-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.