IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014407.html
   My bibliography  Save this article

Development of surface torrefaction process to utilize agro-byproducts as an energy source

Author

Listed:
  • Kim, Seok Jun
  • Park, Sunyong
  • Oh, Kwang Cheol
  • Ju, Young Min
  • Cho, La hoon
  • Kim, Dae Hyun

Abstract

In this study, to improve the fuel characteristics of unused agro-byproducts and utilize these as an energy source after pelletizing, a thermochemical process termed as surface torrefaction was developed. After torrefaction, the amount of available energy and energy yield decreased due to mass reduction. Thus, surface torrefaction minimized the amount of input energy and energy yield. During this process, the carbonized surface of pellets and any moisture was removed from inside the pellet which is advantageous for storage and transportation. Changes in color and physiochemical characteristics were also observed. The calorific value and moisture content of the wood pellet (WP) and pepper stem pellet (PP) before surface torrefaction were 20.1 MJ kg−1 and 8% and 18.1 MJ kg−1 and 6.5%, respectively. After surface torrefaction, the WP and PP calorific values and energy yields were: 20.3–20.7 MJ kg−1 and 87.3–92.5%, and 18.5–20.1 MJ kg−1 and 86.8–95.9%, respectively. After torrefaction and surface torrefaction, the change in mass yield and fuel characteristics were compared. The optimal conditions for WP and PP treatments, considering hygroscopicity, calorific value, and energy yield, were determined as 300 °C for 4.5 min and 300 °C for 5 min, respectively at surface torrefaction.

Suggested Citation

  • Kim, Seok Jun & Park, Sunyong & Oh, Kwang Cheol & Ju, Young Min & Cho, La hoon & Kim, Dae Hyun, 2021. "Development of surface torrefaction process to utilize agro-byproducts as an energy source," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014407
    DOI: 10.1016/j.energy.2021.121192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    4. Nam, Hyungseok & Capareda, Sergio, 2015. "Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology)," Energy, Elsevier, vol. 91(C), pages 507-516.
    5. Sunyong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & Min Jun Kim & In Seon Jeong & Chung Geon Lee & Dae Hyun Kim, 2020. "Characteristic Analysis of Torrefied Pellets: Determining Optimal Torrefaction Conditions for Agri-Byproduct," Energies, MDPI, vol. 13(2), pages 1-14, January.
    6. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    7. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    8. Kung, Kevin S. & Thengane, Sonal K. & Shanbhogue, Santosh & Ghoniem, Ahmed F., 2019. "Parametric analysis of torrefaction reactor operating under oxygen-lean conditions," Energy, Elsevier, vol. 181(C), pages 603-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Seok Jun & Park, Sun Yong & Oh, Kwang Cheol & Cho, La hoon & Jeon, Young Kwang & Kim, Dae Hyun, 2023. "Improvement of fuel characteristics for forest by-products applied surface torrefaction process," Energy, Elsevier, vol. 284(C).
    2. Sun Yong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & Young Kwang Jeon & Dae Hyun Kim, 2023. "Evaluation of the Optimal Conditions for Oxygen-Rich and Oxygen-Lean Torrefaction of Forestry Byproduct as a Fuel," Energies, MDPI, vol. 16(12), pages 1-19, June.
    3. Muhammet Enes Önür & Kamil Ekinci & Mihriban Civan & Mehmet Emin Bilgili & Sema Yurdakul, 2023. "Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust," Sustainability, MDPI, vol. 15(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    3. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    4. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    5. Kutlu, O. & Kocar, G., 2020. "Improving stability of torrefied biomass at cooling stage," Renewable Energy, Elsevier, vol. 147(P1), pages 814-823.
    6. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    9. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    10. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    11. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    12. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    13. Nam, Hyungseok & Capareda, Sergio C. & Ashwath, Nanjappa & Kongkasawan, Jinjuta, 2015. "Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors," Energy, Elsevier, vol. 93(P2), pages 2384-2394.
    14. Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Rodriguez-Alejandro, David Aaron, 2016. "Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods," Energy, Elsevier, vol. 95(C), pages 187-199.
    15. Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
    16. Montree Wongsiriwittaya & Teerapat Chompookham & Bopit Bubphachot, 2023. "Improvement of Higher Heating Value and Hygroscopicity Reduction of Torrefied Rice Husk by Torrefaction and Circulating Gas in the System," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    17. Ahmad, Razi & Mohd Ishak, Mohd Azlan & Kasim, Nur Nasulhah & Ismail, Khudzir, 2019. "Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal," Energy, Elsevier, vol. 167(C), pages 538-547.
    18. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    19. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    20. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.