IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221011920.html
   My bibliography  Save this article

Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution

Author

Listed:
  • Wu, Xi
  • Zhang, Xinjie
  • Xu, Shiming
  • Gong, Ying
  • Yang, Shuaishuai
  • Jin, Dongxu

Abstract

Salinity gradient energy exists between the concentrated and diluted electrolyte solutions, which can be converted to the electromotive force of a reverse electrodialysis (RED) cell. The waste solution is regenerable to restore the initial concentrations by absorbing thermal energy. The energy conversion efficiency of such a heat−to−power system is strongly influenced by the working solutions. The potassium acetate−methanol−water solution is proposed and assessed as the new candidate working fluid for the RED power system in this study firstly. The electrical conductivity of this ternary solution is fully measured and found to be influenced by the solution concentration, temperature and solvent composition. The maximum measured electrical conductivity value is 144.0 mS cm−1 at 6.0 mol kg−1 at 313.15 K. Furtherly, the electrical convertibility of potassium acetate−methanol−water is tested under the varying conditions freshly. The RED cell performances are influenced by the concentrations of the feeding dilute solution (recommendation: 0.02 mol kg−1), concentrated solution (optimum: 6.0 mol kg−1), solution flow rate (approximately 1.5 cm s−1), solution temperature (20 K higher than the environmental temperature), solvent composition (aqueous methanol solvent is preferred), and width of solution compartment (100 μm is suitable). Potassium acetate−methanol−water is a competitive new working fluid with the comprehensive advantages in thermodynamic and electrochemical properties.

Suggested Citation

  • Wu, Xi & Zhang, Xinjie & Xu, Shiming & Gong, Ying & Yang, Shuaishuai & Jin, Dongxu, 2021. "Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221011920
    DOI: 10.1016/j.energy.2021.120944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    2. Yuzer, B. & Selcuk, H. & Chehade, G. & Demir, M.E. & Dincer, I., 2020. "Evaluation of hydrogen production via electrolysis with ion exchange membranes," Energy, Elsevier, vol. 190(C).
    3. Giacalone, F. & Olkis, C. & Santori, G. & Cipollina, A. & Brandani, S. & Micale, G., 2019. "Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis," Energy, Elsevier, vol. 166(C), pages 674-689.
    4. Suda, F. & Matsuo, T. & Ushioda, D., 2007. "Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water," Energy, Elsevier, vol. 32(3), pages 165-173.
    5. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    6. Avci, Ahmet H. & Tufa, Ramato A. & Fontananova, Enrica & Di Profio, Gianluca & Curcio, Efrem, 2018. "Reverse Electrodialysis for energy production from natural river water and seawater," Energy, Elsevier, vol. 165(PA), pages 512-521.
    7. Jeong, Hoe-In & Kim, Hyun Jung & Kim, Dong-Kwon, 2014. "Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization," Energy, Elsevier, vol. 68(C), pages 229-237.
    8. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    9. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    2. Ciofalo, Michele & La Cerva, Mariagiorgia & Di Liberto, Massimiliano & Gurreri, Luigi & Cipollina, Andrea & Micale, Giorgio, 2019. "Optimization of net power density in Reverse Electrodialysis," Energy, Elsevier, vol. 181(C), pages 576-588.
    3. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    4. Tian, Hailong & Wang, Ying & Pei, Yuansheng & Crittenden, John C., 2020. "Unique applications and improvements of reverse electrodialysis: A review and outlook," Applied Energy, Elsevier, vol. 262(C).
    5. Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
    6. Hailong Gao & Zhiyong Xiao & Jie Zhang & Xiaohan Zhang & Xiangdong Liu & Xinying Liu & Jin Cui & Jianbo Li, 2023. "Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    7. Alessandro Cosenza & Giovanni Campisi & Francesco Giacalone & Serena Randazzo & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2022. "Power Production from Produced Waters via Reverse Electrodialysis: A Preliminary Assessment," Energies, MDPI, vol. 15(11), pages 1-20, June.
    8. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    9. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    10. Andrea Zaffora & Andrea Culcasi & Luigi Gurreri & Alessandro Cosenza & Alessandro Tamburini & Monica Santamaria & Giorgio Micale, 2020. "Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis," Energies, MDPI, vol. 13(20), pages 1-22, October.
    11. Chen, Man & Mei, Ying & Yu, Yuqing & Zeng, Raymond Jianxiong & Zhang, Fang & Zhou, Shungui & Tang, Chuyang Y., 2019. "An internal-integrated RED/ED system for energy-saving seawater desalination: A model study," Energy, Elsevier, vol. 170(C), pages 139-148.
    12. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    13. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    14. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    15. Ortega-Delgado, B. & Giacalone, F. & Cipollina, A. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G., 2019. "Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    17. Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
    18. Mei, Mei & Chen, Zhihua, 2021. "Evaluation and selection of sustainable hydrogen production technology with hybrid uncertain sustainability indicators based on rough-fuzzy BWM-DEA," Renewable Energy, Elsevier, vol. 165(P1), pages 716-730.
    19. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    20. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221011920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.