IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000222.html
   My bibliography  Save this article

Performance analysis of a novel solar-to-hydrogen system with energy storage via machine learning and particle swarm optimization

Author

Listed:
  • Liu, Xianyang
  • Zhu, Tianyu
  • Wei, Zhihao
  • Cai, Shanshan
  • Long, Rui
  • Liu, Zhichun

Abstract

Efficient solar-to-hydrogen system can substantially accelerate the achievement of the carbon neutrality commitment. Here, a novel solar powered hydrogen production system with energy storage is proposed. It comprises a solar energy collector, an adsorption desalination (AD) module, solution storage devices, a reverse electrodialysis (RED) module, a DC-DC converter module, and a proton exchange membrane (PEM) electrolyzer module. The impacts of solar radiation intensity, RED working voltage, and AD adsorption time on the hydrogen production power, hydrogen production rate, and overall hydrogen efficiency are systematically investigated. The optimal system performance under the direct coupling mode and energy storage mode in a day are identified via machine learning and particle swarm optimization. When the system operating under the direct coupling mode, the optimal total amount of hydrogen produced reaches 126.29 L per day. When the system operating under the energy storage mode, the optimal total hydrogen production presents a maximum value of 140.84 L per day at the RED working time of 13 h. Compared with the direct coupling mode, the total hydrogen production of the system under the energy storage mode is increased by 11.5 %.

Suggested Citation

  • Liu, Xianyang & Zhu, Tianyu & Wei, Zhihao & Cai, Shanshan & Long, Rui & Liu, Zhichun, 2025. "Performance analysis of a novel solar-to-hydrogen system with energy storage via machine learning and particle swarm optimization," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000222
    DOI: 10.1016/j.energy.2025.134380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2017. "Performance evaluation of a solar-driven adsorption desalination-cooling system," Energy, Elsevier, vol. 128(C), pages 196-207.
    2. Toghyani, S. & Afshari, E. & Baniasadi, E. & Atyabi, S.A. & Naterer, G.F., 2018. "Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer," Energy, Elsevier, vol. 152(C), pages 237-246.
    3. Solmecke, H & Just, O & Hackstein, D, 2000. "Comparison of solar hydrogen storage systems with and without power-electronic DC–DC-converters," Renewable Energy, Elsevier, vol. 19(1), pages 333-338.
    4. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    6. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    7. Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
    8. Ahmad, G.E. & El Shenawy, E.T., 2006. "Optimized photovoltiac system for hydrogen production," Renewable Energy, Elsevier, vol. 31(7), pages 1043-1054.
    9. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    10. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    11. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    12. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    2. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    3. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    4. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2025. "Real-time configuration-switching control strategy optimization of four-bed adsorption-based power and cooling cogeneration system," Energy, Elsevier, vol. 320(C).
    5. Long, Rui & Zhao, Yanan & Luo, Zuoqing & Li, Lei & Liu, Zhichun & Liu, Wei, 2020. "Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting," Energy, Elsevier, vol. 195(C).
    6. Wu, Xi & Zhang, Xinjie & Xu, Shiming & Gong, Ying & Yang, Shuaishuai & Jin, Dongxu, 2021. "Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution," Energy, Elsevier, vol. 232(C).
    7. Ciofalo, Michele & La Cerva, Mariagiorgia & Di Liberto, Massimiliano & Gurreri, Luigi & Cipollina, Andrea & Micale, Giorgio, 2019. "Optimization of net power density in Reverse Electrodialysis," Energy, Elsevier, vol. 181(C), pages 576-588.
    8. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    9. Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
    10. Qiang Leng & Feilong Li & Zhenxin Tao & Zhanwei Wang & Xi Wu, 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat," Energies, MDPI, vol. 17(21), pages 1-24, October.
    11. Hailong Gao & Zhiyong Xiao & Jie Zhang & Xiaohan Zhang & Xiangdong Liu & Xinying Liu & Jin Cui & Jianbo Li, 2023. "Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    12. Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
    13. Tristán, C. & Fallanza, M. & Ortiz, I. & Ibáñez, R. & Grossmann, I.E., 2024. "Cost-optimal design of reverse electrodialysis process for salinity gradient-based electricity generation in desalination plants," Energy, Elsevier, vol. 313(C).
    14. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    15. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    16. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    17. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    18. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    19. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    20. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.