IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008380.html
   My bibliography  Save this article

Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems

Author

Listed:
  • Li, Jian
  • Yang, Zhen
  • Hu, Shuozhuo
  • Duan, Yuanyuan

Abstract

Various heat sources and cooling fluids bring different requirements on the anti-corrosion performance of heat exchangers in organic Rankine cycle (ORC) systems. Using different materials may change optimal parameters and thermo-economic performance of ORC systems due to substantially different thermal conductivities and cost coefficients. This paper studied the influences of heat exchanger materials on optimal design and thermo-economic performance of ORC systems for various heat source conditions. The widely-used shell-and-tube heat exchanger was selected, and carbon steel, copper, and stainless steel were focused. The utilization costs of different types of heat sources were compared. Results indicate that the corrosivity of heat source and cooling fluid is a key factor deciding the utilization cost. The difference of specific investment cost (SIC) caused by different heat exchanger materials is up to 25.5%, which substantially exceeds that caused by different working fluids (2.3%). Even the corrosivity restriction is not considered, the maximum difference in SIC is still 11.0%, and the low-cost material is preferred. The lower the temperature and flow rate of heat source, the more significant the influences of heat exchanger materials. The improper selection of heat exchanger materials will underestimate the economic benefits of ORC technology.

Suggested Citation

  • Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008380
    DOI: 10.1016/j.energy.2021.120589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walraven, Daniël & Laenen, Ben & D’haeseleer, William, 2015. "Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled?," Applied Energy, Elsevier, vol. 142(C), pages 144-153.
    2. Sadeghi, Mohsen & Nemati, Arash & ghavimi, Alireza & Yari, Mortaza, 2016. "Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures," Energy, Elsevier, vol. 109(C), pages 791-802.
    3. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    4. Florian Heberle & Dieter Brüggemann, 2016. "Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery," Energies, MDPI, vol. 9(4), pages 1-16, March.
    5. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    6. Vignarooban, K. & Xu, Xinhai & Wang, K. & Molina, E.E. & Li, P. & Gervasio, D. & Kannan, A.M., 2015. "Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems," Applied Energy, Elsevier, vol. 159(C), pages 206-213.
    7. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    8. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    9. Hærvig, J. & Sørensen, K. & Condra, T.J., 2016. "Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery," Energy, Elsevier, vol. 96(C), pages 592-602.
    10. Kim, Young Min & Shin, Dong Gil & Kim, Chang Gi & Cho, Gyu Baek, 2016. "Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources," Energy, Elsevier, vol. 96(C), pages 482-494.
    11. Florian Heberle & Dieter Brüggemann, 2015. "Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures," Energies, MDPI, vol. 8(3), pages 1-28, March.
    12. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    13. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    14. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    15. Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
    16. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pierobon, Leonardo & Kærn, Martin R. & Haglind, Fredrik & Greig, Alistair, 2017. "Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region," Energy, Elsevier, vol. 141(C), pages 975-990.
    17. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    2. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    3. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    4. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Wang, Chongyao & Zhang, Wujie & Wang, Yan, 2022. "Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles," Energy, Elsevier, vol. 246(C).
    5. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    6. Luo, Junwei & Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Chen, Jianyong & Liang, Yingzong & Yang, Zhi & Chen, Ying, 2023. "Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions," Energy, Elsevier, vol. 264(C).
    7. Guangbiao Fu & Songyuan Zhang & Zhong Ge & Jian Li & Jian Xu & Jianbin Xie & Zhiyong Xie & Dong Yao & Tao Zhao & Zhijie Wang & Shuaikun Yue & Siyu Zhao & Fanhan Liu & Qiuping Jiang, 2022. "Thermo-Economic Performance Analysis of a Novel Organic Flash Rankine Cycle Using R600/R245fa Mixtures," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    4. Li, Jian & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan & Yang, Zhen, 2019. "Thermo-economic performance evaluation of emerging liquid-separated condensation method in single-pressure and dual-pressure evaporation organic Rankine cycle systems," Applied Energy, Elsevier, vol. 256(C).
    5. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    6. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    8. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    9. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    10. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    11. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    12. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    13. Zhonghe Han & Peng Li & Xu Han & Zhongkai Mei & Zhi Wang, 2017. "Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery," Energies, MDPI, vol. 10(10), pages 1-23, October.
    14. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    15. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    16. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    17. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    18. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    20. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.