IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002846.html
   My bibliography  Save this article

Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle

Author

Listed:
  • Wang, Shukun
  • Li, Ke
  • Yu, Wei
  • Liu, Chao
  • Guan, Zhengjun

Abstract

The development and utilization of renewable energies and waste heat contribute to alleviating global issues of fossil energy shortage and environmental pollution, and energy consumption structure transition. Organic Rankine cycle (ORC), specifically transcritical ORC (tORC), garners significant attention for its potential in low-grade heat power generation. However, the existence of non-condensable gases (NCGs) caused by an incomplete vacuum process or organic fluid pyrolysis may have negative effects on system performance. Analyzing and quantifying the effects of different NCGs is of great significance for putting forward the relevant solution measures and helps improve the mechanism of pyrolysis products' influence. In this work, a novel thermodynamic model is proposed for tORC systems considering off-design performance to evaluate the effects of NCGs. Five different hydrocarbons including n-butane, n-pentane, i-pentane, cyclopentane, and n-hexane, are selected as working fluid candidates, while four NCGs are chosen as study objects including nitrogen, methane, ethane, and propylene. The established model realizes the function of analyzing and comparing the effects of different NCGs on thermodynamic performances of tORC systems. Results showed that the tORC system using cyclopentane had the best thermodynamic performances after the optimized design process. The case study indicated that an increase in the mass fraction of NCG caused the condensing pressure increase and system's thermodynamic performance degradation. Furthermore, larger variations were exhibited in the net power output when the design condensing temperature was higher. Finally, the comparative study showed that methane had the greatest negative effects on thermodynamic performances of tORC systems, especially for using n-butane.

Suggested Citation

  • Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002846
    DOI: 10.1016/j.energy.2024.130513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.