IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3342-d262257.html
   My bibliography  Save this article

Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO 2 /R161 Mixture Based on Natural Draft Dry Cooling Towers

Author

Listed:
  • Yingjie Zhou

    (College of Computer Science, Sichuan University, Chengdu 610065, China
    Key Laboratory of Low-grade Energy Utilization Technologies & Systems, Ministry of Education, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Junrong Tang

    (College of Aerospace Engineering, Chongqing University, Chongqing 400044, China,)

  • Cheng Zhang

    (CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, NPIC, Chengdu 610213, China)

  • Qibin Li

    (Key Laboratory of Low-grade Energy Utilization Technologies & Systems, Ministry of Education, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

Abstract

Heat rejection in the hot-arid area is of concern to power cycles, especially for the transcritical Rankine cycle using CO 2 as the working fluid in harvesting the low-grade energy. Usually, water is employed as the cooling substance in Rankine cycles. In this paper, the transcritical Rankine cycle with CO 2 /R161 mixture and dry air cooling systems had been proposed to be used in arid areas with water shortage. A design and rating model for mixture-air cooling process were developed based on small-scale natural draft dry cooling towers. The influence of key parameters on the system’s thermodynamic performance was tested. The results suggested that the thermal efficiency of the proposed system was decreased with the increases in the turbine inlet pressure and the ambient temperature, with the given thermal power as the heat source. Additionally, the cooling performance of natural draft dry cooling tower was found to be affected by the ambient temperature and the turbine exhaust temperature.

Suggested Citation

  • Yingjie Zhou & Junrong Tang & Cheng Zhang & Qibin Li, 2019. "Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO 2 /R161 Mixture Based on Natural Draft Dry Cooling Towers," Energies, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3342-:d:262257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun & Chen, Xi, 2018. "Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources," Energy, Elsevier, vol. 159(C), pages 482-495.
    2. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    3. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    4. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    5. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    6. Yingjie Zhou & Qibin Li & Qiang Wang, 2019. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study," Energies, MDPI, vol. 12(13), pages 1-9, June.
    7. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    8. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    9. Ding, Yang & Liu, Chao & Zhang, Cheng & Xu, Xiaoxiao & Li, Qibin & Mao, Lianfei, 2018. "Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid," Energy, Elsevier, vol. 145(C), pages 52-64.
    10. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun, 2019. "Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles," Energy, Elsevier, vol. 168(C), pages 332-345.
    11. Hong Gao & Fuxiang Chen, 2018. "Thermo-Economic Analysis of a Bottoming Kalina Cycle for Internal Combustion Engine Exhaust Heat Recovery," Energies, MDPI, vol. 11(11), pages 1-19, November.
    12. Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
    13. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    14. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Wang & Feng Wang & Bohong Chen, 2020. "Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery," Energies, MDPI, vol. 13(7), pages 1-18, March.
    2. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Capata & Erasmo Zangrillo, 2014. "Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery," Energies, MDPI, vol. 7(12), pages 1-28, November.
    2. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    3. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    4. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
    5. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    6. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    7. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    8. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pierobon, Leonardo & Kærn, Martin R. & Haglind, Fredrik & Greig, Alistair, 2017. "Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region," Energy, Elsevier, vol. 141(C), pages 975-990.
    9. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    10. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    11. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    12. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    13. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    15. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Cho, Soo-Yong & Cho, Chong-Hyun & Ahn, Kook-Young & Lee, Young Duk, 2014. "A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy," Energy, Elsevier, vol. 64(C), pages 900-911.
    17. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    18. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    19. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    20. Li, Yang & Xu, Sheng-Zhi, 2022. "Thermodynamic analysis of subcritical/transcritical ORCs with metal–organic heat carriers for efficient power generation from low-grade thermal energy," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3342-:d:262257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.