IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8055-d957597.html
   My bibliography  Save this article

Thermo-Economic Performance Analysis of a Novel Organic Flash Rankine Cycle Using R600/R245fa Mixtures

Author

Listed:
  • Guangbiao Fu

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China
    These authors contributed equally to this work.)

  • Songyuan Zhang

    (Faculty of Metallurgical and Mining, Kunming Metallurgy College, Kunming 650033, China
    These authors contributed equally to this work.)

  • Zhong Ge

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Jian Li

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Jian Xu

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Jianbin Xie

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Zhiyong Xie

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Dong Yao

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Tao Zhao

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Zhijie Wang

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Shuaikun Yue

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Siyu Zhao

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

  • Fanhan Liu

    (College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China)

  • Qiuping Jiang

    (School of Architecture and Urban Planning, Yunnan University, Kunming 650504, China)

Abstract

The organic flash cycle (OFC) is a novel power cycle with small exergy loss in the endothermic process. However, the low-pressure throttle valve in the cycle has a large throttling loss. Aiming to reduce the cycle exergy loss and improve the system performance, this study constructs a new configuration named the organic flash Rankine cycle (OFRC). Using the R600/R245fa mixture as the circulating working fluid and 200 °C geothermal water as the heat source, the effects of the change in working fluid composition on the thermal properties of the OFRC were studied based on the first and second laws of thermodynamics. Then, the economic performance of the proposed OFRC was investigated and then compared with that of the conventional OFC. The results show that the OFRC system has a significant improvement in thermal performance and economy compared with the OFC system. When the mole composition of the R600/R245fa mixture is 0.5/0.5, the net output work, thermal efficiency, and exergy efficiency of the OFRC system can reach a maximum at 146.39 kW, 21.51%, and 80.94%, respectively, which are 98.2 kW, 14.43%, and 54.3% higher than those of the OFC system. The dual heaters in the OFRC system can effectively reduce loss in the endothermic process. When the R600 mole composition is 0.5 in the OFRC system, the exergy loss of the heater is only 7.42%, and the power generation cost (0.3267 $·kW −1 ·h −1 only) is lower than that in the OFC system.

Suggested Citation

  • Guangbiao Fu & Songyuan Zhang & Zhong Ge & Jian Li & Jian Xu & Jianbin Xie & Zhiyong Xie & Dong Yao & Tao Zhao & Zhijie Wang & Shuaikun Yue & Siyu Zhao & Fanhan Liu & Qiuping Jiang, 2022. "Thermo-Economic Performance Analysis of a Novel Organic Flash Rankine Cycle Using R600/R245fa Mixtures," Energies, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8055-:d:957597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jingye & Gao, Lei & Ye, Zhenhong & Hwang, Yunho & Chen, Jiangping, 2021. "Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application," Energy, Elsevier, vol. 217(C).
    2. Jesper G. Andreasen & Martin R. Kærn & Leonardo Pierobon & Ulrik Larsen & Fredrik Haglind, 2016. "Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids," Energies, MDPI, vol. 9(5), pages 1-15, April.
    3. Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
    4. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    5. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    6. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    7. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    8. Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
    9. Kyoung Hoon Kim, 2019. "Thermodynamic Performance and Optimization Analysis of a Modified Organic Flash Cycle for the Recovery of Low-Grade Heat," Energies, MDPI, vol. 12(3), pages 1-21, January.
    10. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    11. Wang, Lingbao & Bu, Xianbiao & Li, Huashan, 2020. "Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery," Energy, Elsevier, vol. 203(C).
    12. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    2. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    3. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    4. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    5. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
    6. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
    7. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    8. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    9. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    10. Kyoung Hoon Kim, 2019. "Thermodynamic Performance and Optimization Analysis of a Modified Organic Flash Cycle for the Recovery of Low-Grade Heat," Energies, MDPI, vol. 12(3), pages 1-21, January.
    11. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    12. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    13. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    14. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    15. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    16. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    17. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    19. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    20. Andri Ottesen & Dieter Thom & Rupali Bhagat & Rola Mourdaa, 2023. "Learning from the Future of Kuwait: Scenarios as a Learning Tool to Build Consensus for Actions Needed to Realize Vision 2035," Sustainability, MDPI, vol. 15(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8055-:d:957597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.