IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012611.html
   My bibliography  Save this article

Recommended operating conditions and performance evaluation of commonly used hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants in organic Rankine cycle

Author

Listed:
  • Zhang, Xinxin
  • Li, Yingzhen

Abstract

The application of the first three generations of organic refrigerants, namely, CFCs, HCFCs, and HFCs, in an organic Rankine cycle has been widely investigated. As environmentally friendly successors to the above three generations of refrigerants, hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) have also attracted increasing research interest for their application in the organic Rankine cycle (ORC). Based on molecular complexity, characteristic points on saturation liquid and vapor curve and area of characteristic regions in temperature-entropy (T-s) diagram, eight common hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are classified, analyzed, and evaluated. In addition, the type of heat source and specific operating conditions in which these eight hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are most effective are recommended. The results show that molecular complexity of hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) mainly depends on the length of the C chain, and then on the number and location of Cl and F atoms. HFO-1243zf has the best comprehensive evaluation indicator, and it is noteworthy as a recommended working fluid for subcritical ORC systems. The result obtained in this paper may provide a reference for the design and actual operation of Organic Rankine Cycle system using HFO and HCFO as working fluids.

Suggested Citation

  • Zhang, Xinxin & Li, Yingzhen, 2024. "Recommended operating conditions and performance evaluation of commonly used hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants in organic Rankine cycle," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012611
    DOI: 10.1016/j.energy.2024.131488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.