IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308628.html
   My bibliography  Save this article

Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms

Author

Listed:
  • Dhiman, Harsh S.
  • Deb, Dipankar

Abstract

Wind energy installation numbers have witnessed a sharp increase in the recent past. Additionally, wind farms are seen as an effective and potent part of the interconnected power system. Significant variations in the wind speed pose a challenge for wind farm operators to provide accurate forecasts. In this manuscript, three hybrid wind farms, each comprising of wind turbines and battery energy storage systems, are located in the vicinity of each other and are assumed to deliver power to a utility grid. Fuzzy-based Multi-criteria decision-making techniques are applied to this cluster of three hybrid wind farms to determine the best strategy. Machine learning-based LSSVR method is utilized for wind speed forecasting and penalty cost estimation. Fuzzy TOPSIS and Fuzzy COPRAS evaluated and potential reversal of rankings is also explored. With a cumulative priority score of 0.4573 and 99.3 for dataset X1, both, fuzzy TOPSIS and fuzzy COPRAS respectively indicate that A3, that is, paying penalty for power borrowed from a neighboring wind farm is the best alternative for a hybrid wind farm. This study gives new insights into decision-making, specifically for hybrid wind farms.

Suggested Citation

  • Dhiman, Harsh S. & Deb, Dipankar, 2020. "Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308628
    DOI: 10.1016/j.energy.2020.117755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriot, Arthur, 2015. "Economic curtailment of intermittent renewable energy sources," Energy Economics, Elsevier, vol. 49(C), pages 370-379.
    2. Dhiman, Harsh S. & Deb, Dipankar & Guerrero, Josep M., 2019. "Hybrid machine intelligent SVR variants for wind forecasting and ramp events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 369-379.
    3. Beşkirli, Mehmet & Koç, İsmail & Haklı, Hüseyin & Kodaz, Halife, 2018. "A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 301-308.
    4. Jafarian, M. & Ranjbar, A.M., 2010. "Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine," Renewable Energy, Elsevier, vol. 35(9), pages 2008-2014.
    5. Onar, Sezi Cevik & Oztaysi, Basar & Otay, İrem & Kahraman, Cengiz, 2015. "Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets," Energy, Elsevier, vol. 90(P1), pages 274-285.
    6. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    7. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    8. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    9. Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
    10. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    2. Xiangsheng Dou, 2022. "Agro-ecological sustainability evaluation in China," Journal of Bioeconomics, Springer, vol. 24(3), pages 223-239, October.
    3. Asmamaw Sewnet & Baseem Khan & Issaias Gidey & Om Prakash Mahela & Adel El-Shahat & Almoataz Y. Abdelaziz, 2022. "Mitigating Generation Schedule Deviation of Wind Farm Using Battery Energy Storage System," Energies, MDPI, vol. 15(5), pages 1-26, February.
    4. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    5. Ziquan Xiang & Muhammad Hamza Naseem & Jiaqi Yang, 2022. "Selection of Coal Transportation Company Based on Fuzzy SWARA-COPRAS Approach," Logistics, MDPI, vol. 6(1), pages 1-15, January.
    6. Muhammet Deveci & Raghunathan Krishankumar & Ilgin Gokasar & Rumeysa Tuna Deveci, 2023. "Prioritization of healthcare systems during pandemics using Cronbach’s measure based fuzzy WASPAS approach," Annals of Operations Research, Springer, vol. 328(1), pages 279-307, September.
    7. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    8. Aleksandra Łuczak & Małgorzata Just, 2020. "A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    9. Tsai, Pei-Hsuan & Chen, Chih-Jou & Hsiao, Wei-Hung & Lin, Chin-Tsai, 2023. "Factors influencing the consumers’ behavioural intention to use online food delivery service: Empirical evidence from Taiwan," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    10. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    11. Bihter Gizem Demircan & Kaan Yetilmezsoy, 2023. "A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    13. Deveci, Muhammet & Pamucar, Dragan & Gokasar, Ilgin & Isik, Mehtap & Coffman, D'Maris, 2022. "Fuzzy Einstein WASPAS approach for the economic and societal dynamics of the climate change mitigation strategies in urban mobility planning," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 1-17.
    14. Yue Meng & Haoyue Wu & Wenjing Zhao & Wenkuan Chen & Hasan Dinçer & Serhat Yüksel, 2021. "A hybrid heterogeneous Pythagorean fuzzy group decision modelling for crowdfunding development process pathways of fintech-based clean energy investment projects," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-34, December.
    15. Kokkinos, Konstantinos & Nathanail, Eftihia & Gerogiannis, Vassilis & Moustakas, Konstantinos & Karayannis, Vayos, 2022. "Hydrogen storage station location selection in sustainable freight transportation via intuitionistic hesitant decision support system," Energy, Elsevier, vol. 260(C).
    16. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.
    17. Aşkın Özdağoğlu & Gülin Zeynep Öztaş & Murat Kemal Keleş & Volkan Genç, 2021. "An Integrated PIPRECIA and COPRAS Method under Fuzzy Environment: A Case of Truck Tractor Selection," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(2), pages 269-298, December.
    18. Yan Li & Yifan Liu & Shasha Li & Leijie Qi & Jun Xie & Qing Xie, 2022. "A Novel Multi-Objective Optimal Design Method for Dry Iron Core Reactor by Incorporating NSGA-II, TOPSIS and Entropy Weight Method," Energies, MDPI, vol. 15(19), pages 1-15, October.
    19. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    20. Lulu Xin & Shuai Lang & Arunodaya Raj Mishra, 2022. "RETRACTED ARTICLE: Evaluate the challenges of sustainable supply chain 4.0 implementation under the circular economy concept using new decision making approach," Operations Management Research, Springer, vol. 15(3), pages 773-792, December.
    21. Wei Li & Serhat Yüksel & Hasan Dinçer, 2022. "Understanding the financial innovation priorities for renewable energy investors via QFD-based picture fuzzy and rough numbers," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    22. R. Krishankumar & P. P. Amritha & K. S. Ravichandran, 2022. "RETRACTED ARTICLE: An integrated fuzzy decision model for prioritization of barriers affecting sustainability adoption within supply chains under unknown weight context," Operations Management Research, Springer, vol. 15(3), pages 1010-1027, December.
    23. Liqi Yi & Tao Li & Xiangyi Wang & Gentana Ge & Ting Zhang, 2022. "Corporate social responsibility performance evaluation from the perspective of stakeholder heterogeneity based on fuzzy analytical hierarchy process integrated TOPSIS," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 918-935, July.
    24. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    3. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    4. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    5. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    6. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    7. Shuxia Yang & Shengjiang Peng & Xianzhang Ling, 2021. "Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    8. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    9. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    10. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    11. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    12. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    14. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    15. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    16. Mevlut Uyan & Jarosław Janus & Ela Ertunç, 2023. "Land Use Suitability Model for Grapevine ( Vitis vinifera L.) Cultivation Using the Best Worst Method: A Case Study from Ankara/Türkiye," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    17. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    18. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    19. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    20. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.