IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308628.html
   My bibliography  Save this article

Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms

Author

Listed:
  • Dhiman, Harsh S.
  • Deb, Dipankar

Abstract

Wind energy installation numbers have witnessed a sharp increase in the recent past. Additionally, wind farms are seen as an effective and potent part of the interconnected power system. Significant variations in the wind speed pose a challenge for wind farm operators to provide accurate forecasts. In this manuscript, three hybrid wind farms, each comprising of wind turbines and battery energy storage systems, are located in the vicinity of each other and are assumed to deliver power to a utility grid. Fuzzy-based Multi-criteria decision-making techniques are applied to this cluster of three hybrid wind farms to determine the best strategy. Machine learning-based LSSVR method is utilized for wind speed forecasting and penalty cost estimation. Fuzzy TOPSIS and Fuzzy COPRAS evaluated and potential reversal of rankings is also explored. With a cumulative priority score of 0.4573 and 99.3 for dataset X1, both, fuzzy TOPSIS and fuzzy COPRAS respectively indicate that A3, that is, paying penalty for power borrowed from a neighboring wind farm is the best alternative for a hybrid wind farm. This study gives new insights into decision-making, specifically for hybrid wind farms.

Suggested Citation

  • Dhiman, Harsh S. & Deb, Dipankar, 2020. "Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308628
    DOI: 10.1016/j.energy.2020.117755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriot, Arthur, 2015. "Economic curtailment of intermittent renewable energy sources," Energy Economics, Elsevier, vol. 49(C), pages 370-379.
    2. Dhiman, Harsh S. & Deb, Dipankar & Guerrero, Josep M., 2019. "Hybrid machine intelligent SVR variants for wind forecasting and ramp events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 369-379.
    3. Beşkirli, Mehmet & Koç, İsmail & Haklı, Hüseyin & Kodaz, Halife, 2018. "A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 301-308.
    4. Jafarian, M. & Ranjbar, A.M., 2010. "Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine," Renewable Energy, Elsevier, vol. 35(9), pages 2008-2014.
    5. Onar, Sezi Cevik & Oztaysi, Basar & Otay, İrem & Kahraman, Cengiz, 2015. "Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets," Energy, Elsevier, vol. 90(P1), pages 274-285.
    6. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    7. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    8. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    9. Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
    10. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jianwei & Wang, Yaping & Guo, Fengjia & Chen, Jiayi, 2024. "A two-stage decision framework for GIS-based site selection of wind-photovoltaic-hybrid energy storage project using LSGDM method," Renewable Energy, Elsevier, vol. 222(C).
    2. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    4. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    5. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    6. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    7. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    8. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    9. Huibing Cheng & Shanshui Zheng & Jianghong Feng, 2022. "A Fuzzy Multi-Criteria Method for Sustainable Ferry Operator Selection: A Case Study," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    10. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    11. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    12. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
    14. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    15. Dujardin, Jérôme & Schillinger, Moritz & Kahl, Annelen & Savelsberg, Jonas & Schlecht, Ingmar & Lordan-Perret, Rebecca, 2022. "Optimized market value of alpine solar photovoltaic installations," Renewable Energy, Elsevier, vol. 186(C), pages 878-888.
    16. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    17. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    18. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    19. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    20. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.