IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308550.html
   My bibliography  Save this article

Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy

Author

Listed:
  • Bellocchi, S.
  • De Iulio, R.
  • Guidi, G.
  • Manno, M.
  • Nastasi, B.
  • Noussan, M.
  • Prina, M.G.
  • Roberto, R.

Abstract

Increasing electrification of final uses can be a viable solution towards low-carbon energy systems, when coupled with local renewable power generation. Mountain areas can already benefit from high shares of hydro-power generation, but, at the same time, rely on oil products for transport and for the heating sector in remote areas where natural gas infrastructures are not available. This research work evaluates potential scenarios for the electrification of transport and heating sectors, by coupling the simulation tool EnergyPLAN with a multi-objective optimization algorithm to analyse economic and environmental aspects. Results show that the largest benefits are expected from the electrification of the heating sector. Indeed, a CO2 emissions reduction up to 30% can be reached by acting on the transport sector alone, while up to 65% combining it with measures on heating, industry and agriculture sectors and additional electricity generation from photovoltaic systems. Moreover, the use of heat pumps can lead to significant CO2 emissions decrease with only to a slight increase in the overall annual costs thanks to lower variable costs that partly compensate the higher required initial investment and electricity storage deployment. The optimization analyses also highlight the effect of progressive penetration of electric vehicles in the private cars fleet and hydrogen trucks in the light-duty vehicles one.

Suggested Citation

  • Bellocchi, S. & De Iulio, R. & Guidi, G. & Manno, M. & Nastasi, B. & Noussan, M. & Prina, M.G. & Roberto, R., 2020. "Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308550
    DOI: 10.1016/j.energy.2020.117748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    3. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    4. Beagle, E. & Belmont, E., 2019. "Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States," Energy Policy, Elsevier, vol. 128(C), pages 267-275.
    5. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    6. Bellocchi, Sara & Klöckner, Kai & Manno, Michele & Noussan, Michel & Vellini, Michela, 2019. "On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison," Applied Energy, Elsevier, vol. 255(C).
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    8. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    9. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    10. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    11. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    12. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    13. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    14. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    15. Pursiheimo, Esa & Holttinen, Hannele & Koljonen, Tiina, 2019. "Inter-sectoral effects of high renewable energy share in global energy system," Renewable Energy, Elsevier, vol. 136(C), pages 1119-1129.
    16. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    17. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    18. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    19. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
    20. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    3. Johannsen, Rasmus Magni & Prina, Matteo Giacomo & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Sparber, Wolfram, 2023. "Municipal energy system modelling – A practical comparison of optimisation and simulation approaches," Energy, Elsevier, vol. 269(C).
    4. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    5. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    6. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    7. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    8. Sorknæs, Peter & Johannsen, Rasmus M. & Korberg, Andrei D. & Nielsen, Tore B. & Petersen, Uni R. & Mathiesen, Brian V., 2022. "Electrification of the industrial sector in 100% renewable energy scenarios," Energy, Elsevier, vol. 254(PB).
    9. Bin Huang & Jialiang Huang & Ke Xing & Lida Liao & Peiling Xie & Meng Xiao & Wei Zhao, 2023. "Development of a Solar-Tracking System for Horizontal Single-Axis PV Arrays Using Spatial Projection Analysis," Energies, MDPI, vol. 16(10), pages 1-19, May.
    10. Zheng Li & Ruoyao Tang & Hanbin Qiu & Linwei Ma, 2023. "Smart Energy Urban Agglomerations in China: The Driving Mechanism, Basic Concepts, and Indicator Evaluation," Sustainability, MDPI, vol. 15(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    3. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    4. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
    5. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
    7. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    8. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    9. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    10. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    11. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    12. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
    15. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb," Energy, Elsevier, vol. 155(C), pages 824-837.
    16. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    18. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    19. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    20. Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.