IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics0360544220303480.html
   My bibliography  Save this article

Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux

Author

Listed:
  • Jung, Eui Guk
  • Boo, Joon Hong

Abstract

An experimental study was conducted to improve the steady-state thermal performance of a loop heat pipe (LHP) under high heat fluxes by employing a bypass line. The LHP had a sintered metal wick and a flat evaporator, of which the planar dimensions were 40mm×50mm. The wall and tubing system were made of stainless steel, and distilled water was used as the working fluid. The bypass line was installed between the vapor channel of the evaporator and the liquid reservoir to control the thermal performance of the LHP. A control valve was placed in the bypass line to enable changing between the normal and bypass line operation modes. An experimental investigation was conducted to identify the effect of the bypass line on the LHP performance, from the viewpoints of the temperatures at representative points and the thermal resistance. The steady-state performances of the LHPs with and without the bypass line were analyzed and compared with each other, under thermal loads of 100 W–260 W (21.2 W/cm2). Typical results showed that the evaporator wall temperature was decreased by approximately 45 °C, resulting in reduction of thermal resistance by 28.1 %, for the LHP with the bypass line.

Suggested Citation

  • Jung, Eui Guk & Boo, Joon Hong, 2020. "Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303480
    DOI: 10.1016/j.energy.2020.117241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220303480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Meskimmon, Richard, 2018. "An investigation into the use of water as a working fluid in wraparound loop heat pipe heat exchanger for applications in energy efficient HVAC systems," Energy, Elsevier, vol. 156(C), pages 597-605.
    2. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    3. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Liao, Zhirong & Xu, Chao & Ren, Yunxiu & Gao, Feng & Ju, Xing & Du, Xiaoze, 2018. "Thermal analysis of a conceptual loop heat pipe for solar central receivers," Energy, Elsevier, vol. 158(C), pages 709-718.
    5. Yu, Min & Diallo, Thierno M.O. & Zhao, Xudong & Zhou, Jinzhi & Du, Zhenyu & Ji, Jie & Cheng, Yuanda, 2018. "Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe," Energy, Elsevier, vol. 158(C), pages 746-759.
    6. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).
    2. Zhang, Hainan & Tian, Yaling & Tian, Changqing & Zhai, Zhiqiang, 2023. "Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Ren, Xiao & Yu, Min & Zhao, Xudong & Li, Jing & Zheng, Siming & Chen, Fucheng & Wang, Zhangyuan & Zhou, Jinzhi & Pei, Gang & Ji, Jie, 2020. "Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model," Energy, Elsevier, vol. 190(C).
    4. Pawel Znaczko & Emilian Szczepanski & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Jacek Kukulski, 2021. "Experimental Diagnosis of the Heat Pipe Solar Collector Malfunction. A Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.
    5. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    6. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    7. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    8. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    9. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    10. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Xiang Gou & Qiyan Zhang & Yamei Li & Yingfan Liu & Shian Liu & Saima Iram, 2018. "Experimental Research on the Thermal Performance and Semi-Visualization of Rectangular Flat Micro-Grooved Gravity Heat Pipes," Energies, MDPI, vol. 11(9), pages 1-12, September.
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    14. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    15. Widyolar, Bennett & Jiang, Lun & Brinkley, Jordyn & Hota, Sai Kiran & Ferry, Jonathan & Diaz, Gerardo & Winston, Roland, 2020. "Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics," Applied Energy, Elsevier, vol. 268(C).
    16. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    17. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    18. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    19. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    20. Jiwen Cen & Feng Li & Tingliang Li & Wenbo Huang & Juanwen Chen & Fangming Jiang, 2021. "Experimental Study of the Heat-Transfer Performance of an Extra-Long Gravity-Assisted Heat Pipe Aiming at Geothermal Heat Exploitation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.