IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026433.html
   My bibliography  Save this article

A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon

Author

Listed:
  • Luo, Zhenbing
  • He, Wei
  • Deng, Xiong
  • Zheng, Mu
  • Gao, Tianxiang
  • Li, Shiqing

Abstract

A traditional spray cooling system usually requires a pump to circulate the fluid, and the kinetic energy of high-temperature steam is wasted. A two-phase loop thermosyphon (TPLT) which can circulate its working fluid is thermally driven. However, heat leakage may occur for low heating power. This paper proposes a compacted non-pump self-circulation spray cooling system named active two-phase loop thermosyphon (ATPLT). Dual synthetic jet integrated with spray cooling (DSJS) is used to enhance the performance of evaporator of ATPLT. Without an external pump, the waste heat and evaporation of liquid spray drive the system internal pressure to increase, which pumps the water to the reservoir as well as avoid heat leakage. It only needs a little working fluid and a little energy consumption for actuator, but can maintain hundreds of Watts of heat dissipation capability for a long time, which can facilitate the development of the energy systems. The performance of ATPLT is studied through temperature, pressure, laser particle size and particle image velocimetry experimental researches. The experimental results show that the cooling capability of ATPLT is mainly influenced by Re, We and Ja, and finally a correlation for ATPLT cooling is established with relative errors within ±18%.

Suggested Citation

  • Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026433
    DOI: 10.1016/j.energy.2022.125757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Meskimmon, Richard, 2018. "An investigation into the use of water as a working fluid in wraparound loop heat pipe heat exchanger for applications in energy efficient HVAC systems," Energy, Elsevier, vol. 156(C), pages 597-605.
    2. Sun, Yubiao & Alkhedhair, Abdullah M. & Guan, Zhiqiang & Hooman, Kamel, 2018. "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, Elsevier, vol. 160(C), pages 678-692.
    3. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    4. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    5. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    6. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
    7. Mameli, M. & Mangini, D. & Vanoli, G.F.T. & Araneo, L. & Filippeschi, S. & Marengo, M., 2016. "Advanced multi-evaporator loop thermosyphon," Energy, Elsevier, vol. 112(C), pages 562-573.
    8. Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
    9. Jung, Eui Guk & Boo, Joon Hong, 2020. "Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux," Energy, Elsevier, vol. 197(C).
    10. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Fan, Han-Lin, 2011. "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, Elsevier, vol. 36(5), pages 3399-3405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hainan & Tian, Yaling & Tian, Changqing & Zhai, Zhiqiang, 2023. "Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers," Energy, Elsevier, vol. 284(C).
    2. Almahmoud, Sulaiman & Jouhara, Hussam, 2019. "Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger," Energy, Elsevier, vol. 174(C), pages 972-984.
    3. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    4. Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi & Kibum Kim, 2020. "Thermal and Flow Characteristics in a Concentric Annular Heat Pipe Heat Sink," Energies, MDPI, vol. 13(20), pages 1-15, October.
    5. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    6. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    7. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    8. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    9. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    10. He, Wei & Luo, Zhen-bing & Deng, Xiong & Peng, Can & Liu, Qiang & Gao, Tian-xiang & Cheng, Pan & Zhou, Yan & Peng, Wen-qiang, 2023. "Numerical study on the atomization mechanism and energy characteristics of synthetic jet/dual synthetic jets," Applied Energy, Elsevier, vol. 346(C).
    11. Liangyu Wu & Yingying Chen & Suchen Wu & Mengchen Zhang & Weibo Yang & Fangping Tang, 2018. "Visualization Study of Startup Modes and Operating States of a Flat Two-Phase Micro Thermosyphon," Energies, MDPI, vol. 11(9), pages 1-15, August.
    12. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    13. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    14. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    15. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    16. Mateusz Pawłowski & Jerzy Gagan & Dariusz Butrymowicz, 2022. "Assessment of Efficiency of Heat Transportation in Indirect Propane Refrigeration System Equipped with Carbon Dioxide Circulation Loop," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    17. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    19. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    20. Tawfik, M. & Tonnellier, X. & Sansom, C., 2018. "Light source selection for a solar simulator for thermal applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 802-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.