IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics036054421932033x.html
   My bibliography  Save this article

Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model

Author

Listed:
  • Ren, Xiao
  • Yu, Min
  • Zhao, Xudong
  • Li, Jing
  • Zheng, Siming
  • Chen, Fucheng
  • Wang, Zhangyuan
  • Zhou, Jinzhi
  • Pei, Gang
  • Ji, Jie

Abstract

A novel micro-channel loop-heat-pipe solar photovoltaic/thermal (LHP- PV/T) system is developed employing the co-axial tubular heat exchanger as the condenser and upper-end liquid header with tiny holes as the liquid feeder. The design facilitates an easier connection among the solar modules. It creates the improved condensation and separate evaporation effects within the LHP. A reduced evaporator area will thereby have a minor impact on the overall heat transfer performance, leading to significant potential for cost reduction. A distributed parameter model is established and validated by experimental data. The model is then applied to analyse the cost reduction potential of the LHP- PV/T via the optimization of geometrical and structural parameters. The impact of the area reduction on the LHP evaporator differs from that on the traditional integral heat pipe PV/T. The decrements in thermal and electrical efficiencies of the LHP- PV/T are 2.47% and 0.03% respectively when the width of heat pipes in the evaporator decreases from 26 to 10 mm. When the number of heat pipes decreases from 30 to 6, the decrements in thermal and electrical efficiencies are 4.63% and 0.12%, whilst the overall system cost drops by 28.58%, thus the cost-effectiveness of the system can be improved.

Suggested Citation

  • Ren, Xiao & Yu, Min & Zhao, Xudong & Li, Jing & Zheng, Siming & Chen, Fucheng & Wang, Zhangyuan & Zhou, Jinzhi & Pei, Gang & Ji, Jie, 2020. "Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s036054421932033x
    DOI: 10.1016/j.energy.2019.116338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    2. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    3. Modjinou, Mawufemo & Ji, Jie & Li, Jing & Yuan, Weiqi & Zhou, Fan, 2017. "A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system," Applied Energy, Elsevier, vol. 206(C), pages 708-722.
    4. Yu, Min & Diallo, Thierno M.O. & Zhao, Xudong & Zhou, Jinzhi & Du, Zhenyu & Ji, Jie & Cheng, Yuanda, 2018. "Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe," Energy, Elsevier, vol. 158(C), pages 746-759.
    5. Gang, Pei & Huide, Fu & Huijuan, Zhu & Jie, Ji, 2012. "Performance study and parametric analysis of a novel heat pipe PV/T system," Energy, Elsevier, vol. 37(1), pages 384-395.
    6. He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
    7. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
    2. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    3. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    5. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    6. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    7. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    8. Li, Rui & Li, Jinping & Zhu, Junjie & Liu, Xiaomin & Novakovic, Vojislav, 2023. "A numerical and experimental study on a novel micro heat pipe PV/T system," Energy, Elsevier, vol. 282(C).
    9. David González-Peña & Iván Alonso-deMiguel & Montserrat Díez-Mediavilla & Cristina Alonso-Tristán, 2020. "Experimental Analysis of a Novel PV/T Panel with PCM and Heat Pipes," Sustainability, MDPI, vol. 12(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    2. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    3. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    5. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    6. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    7. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    8. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    9. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    10. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    11. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    12. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    15. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    17. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    18. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    19. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    20. Li, Hong & Sun, Yue, 2019. "Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system," Renewable Energy, Elsevier, vol. 134(C), pages 1240-1247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s036054421932033x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.