IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318134.html
   My bibliography  Save this article

Experimental and numerical study of a directly irradiated hybrid solar/combustion spouted bed reactor for continuous steam gasification of biomass

Author

Listed:
  • Boujjat, Houssame
  • Rodat, Sylvain
  • Chuayboon, Srirat
  • Abanades, Stéphane

Abstract

The concept of hybrid solar gasifiers is proposed to couple autothermal gasification with solar gasification so as to meet the requirement for stable and continuous operation under intermittent or fluctuating solar irradiation. Solar process hybridization through partial oxy-combustion of the feedstock appears to be crucial because thermochemical processes are very sensitive to small solar energy input variations, and require permanent control of thermodynamic conditions to ensure fuel production quality. This work aims to study solar-hybridized steam gasification of biomass in a novel directly-irradiated lab-scale reactor based on the principle of conical jet spouted beds. This concept was first numerically simulated to thoroughly analyze the reactor operation and to provide insights into the temperature distribution, fluid flow dynamics, reactive particle trajectories/conversion, gas species distribution and flame location inside the reactor. A two-phase flow model was developed including discrete phase model for the reactive biomass particles undergoing both combustion and pyro-gasification, and coupled heat and mass transfer. Thereafter, solar-only and mixed solar-combustion experiments were carried out under real concentrated solar flux and the effects of process hybridization on syngas yield and reactor performance were investigated. The results confirmed that O2 feeding rate is a relevant variable to control the process temperature. Accordingly, a continuous operation of the solar reactor can be ensured with variable solar energy input.

Suggested Citation

  • Boujjat, Houssame & Rodat, Sylvain & Chuayboon, Srirat & Abanades, Stéphane, 2019. "Experimental and numerical study of a directly irradiated hybrid solar/combustion spouted bed reactor for continuous steam gasification of biomass," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318134
    DOI: 10.1016/j.energy.2019.116118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curcio, Axel & Rodat, Sylvain & Vuillerme, Valéry & Abanades, Stéphane, 2022. "Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass," Energy, Elsevier, vol. 254(PC).
    2. Fan, Feihu & Zheng, Min & Yang, Shiliang & Wang, Hua, 2021. "Numerical study of fluid dynamics and heat transfer property of dual fluidized bed gasifier," Energy, Elsevier, vol. 234(C).
    3. Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Youssef Karout & Axel Curcio & Julien Eynard & Stéphane Thil & Sylvain Rodat & Stéphane Abanades & Valéry Vuillerme & Stéphane Grieu, 2023. "Model-Based Predictive Control of a Solar Hybrid Thermochemical Reactor for High-Temperature Steam Gasification of Biomass," Clean Technol., MDPI, vol. 5(1), pages 1-23, March.
    5. Houssame Boujjat & Sylvain Rodat & Stéphane Abanades, 2020. "Solar-hybrid Thermochemical Gasification of Wood Particles and Solid Recovered Fuel in a Continuously-Fed Prototype Reactor," Energies, MDPI, vol. 13(19), pages 1-15, October.
    6. Stéphane Abanades & Sylvain Rodat & Houssame Boujjat, 2021. "Solar Thermochemical Green Fuels Production: A Review of Biomass Pyro-Gasification, Solar Reactor Concepts and Modelling Methods," Energies, MDPI, vol. 14(5), pages 1-33, March.
    7. Chuayboon, Srirat & Abanades, Stéphane, 2023. "Carbon-neutral synfuel production via continuous solar H2O and CO2 gasification of oil palm empty fruit bunch," Energy, Elsevier, vol. 281(C).
    8. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    2. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    3. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    4. Martínez-Lera, Susana & Pallarés Ranz, Javier, 2016. "On the development of a wood gasification modelling approach with special emphasis on primary devolatilization and tar formation and destruction phenomena," Energy, Elsevier, vol. 113(C), pages 643-652.
    5. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    6. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    8. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    9. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    10. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    11. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    12. Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.
    13. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    14. Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
    15. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    16. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    17. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    18. Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
    19. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    20. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.