IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v5y2023i1p18-351d1086110.html
   My bibliography  Save this article

Model-Based Predictive Control of a Solar Hybrid Thermochemical Reactor for High-Temperature Steam Gasification of Biomass

Author

Listed:
  • Youssef Karout

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan, France)

  • Axel Curcio

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font-Romeu-Odeillo-Via, France)

  • Julien Eynard

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan, France)

  • Stéphane Thil

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan, France)

  • Sylvain Rodat

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font-Romeu-Odeillo-Via, France)

  • Stéphane Abanades

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font-Romeu-Odeillo-Via, France)

  • Valéry Vuillerme

    (Thermodynamic and Solar Technologies Laboratory, CEA-INES, 50 Avenue Lac, 73375 Bourget-du-Lac, France)

  • Stéphane Grieu

    (Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan, France)

Abstract

The present paper deals with both the modeling and the dynamic control of a solar hybrid thermochemical reactor designed to produce syngas through the high-temperature steam gasification of biomass. First, a model of the reactor based on the thermodynamic equilibrium is presented. The Cantera toolbox is used. Then, a model-based predictive controller (MPC) is proposed with the aim of maintaining the reactor’s temperature at its nominal value, thus preserving the reactor’s stability. This is completed by adjusting the mirrors’ defocusing factor or burning a part of the biomass to compensate for variations of direct normal irradiance (DNI) round the clock. This controller is compared to a reference controller, which is defined as a combination of a rule-based controller and an adaptive proportional–integral–derivative (PID) controller with optimized gains. The robustness of the MPC controller to forecast errors is also studied by testing different DNI forecasts: perfect forecasts, smart persistence forecasts and image-based forecasts. Because of a high optimization time, the Cantera function is replaced with a 2D interpolation function. The results show that (1) the developed MPC controller outperforms the reference controller, (2) the integration of image-based DNI forecasts produces lower root mean squared error (RMSE) values, and (3) the optimization time is significantly reduced thanks to the proposed interpolation function.

Suggested Citation

  • Youssef Karout & Axel Curcio & Julien Eynard & Stéphane Thil & Sylvain Rodat & Stéphane Abanades & Valéry Vuillerme & Stéphane Grieu, 2023. "Model-Based Predictive Control of a Solar Hybrid Thermochemical Reactor for High-Temperature Steam Gasification of Biomass," Clean Technol., MDPI, vol. 5(1), pages 1-23, March.
  • Handle: RePEc:gam:jcltec:v:5:y:2023:i:1:p:18-351:d:1086110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/5/1/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/5/1/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caldas, M. & Alonso-Suárez, R., 2019. "Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1643-1658.
    2. Curcio, Axel & Rodat, Sylvain & Vuillerme, Valéry & Abanades, Stéphane, 2022. "Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass," Energy, Elsevier, vol. 254(PC).
    3. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    4. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    5. Boujjat, Houssame & Rodat, Sylvain & Chuayboon, Srirat & Abanades, Stéphane, 2019. "Experimental and numerical study of a directly irradiated hybrid solar/combustion spouted bed reactor for continuous steam gasification of biomass," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    2. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    3. Chuayboon, Srirat & Abanades, Stéphane, 2023. "Carbon-neutral synfuel production via continuous solar H2O and CO2 gasification of oil palm empty fruit bunch," Energy, Elsevier, vol. 281(C).
    4. Houssame Boujjat & Sylvain Rodat & Stéphane Abanades, 2020. "Solar-hybrid Thermochemical Gasification of Wood Particles and Solid Recovered Fuel in a Continuously-Fed Prototype Reactor," Energies, MDPI, vol. 13(19), pages 1-15, October.
    5. Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    7. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    8. Stéphane Abanades & Sylvain Rodat & Houssame Boujjat, 2021. "Solar Thermochemical Green Fuels Production: A Review of Biomass Pyro-Gasification, Solar Reactor Concepts and Modelling Methods," Energies, MDPI, vol. 14(5), pages 1-33, March.
    9. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    10. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    11. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    12. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    13. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    14. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    15. Curcio, Axel & Rodat, Sylvain & Vuillerme, Valéry & Abanades, Stéphane, 2022. "Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass," Energy, Elsevier, vol. 254(PC).
    16. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
    17. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    18. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    19. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    20. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:5:y:2023:i:1:p:18-351:d:1086110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.