IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922006134.html
   My bibliography  Save this article

Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling

Author

Listed:
  • Jiao, Liguo
  • Li, Jian
  • Yan, Beibei
  • Chen, Guanyi
  • Ahmed, Sarwaich

Abstract

The serious environmental issues are risen by the high-moisture herb residue (HR). Thermochemical conversion of HR shows the potential for not only clean treatment, but also utilizing its energy. In this study, microwave torrefaction (MT) and conventional torrefaction (CT) were integrated with gasification respectively, for the HR treatment. The systems were simulated and comparatively investigated by Aspen Plus. The modeling of MT was achieved for the first time, and it was validated by the experimental data. The effects of torrefaction on gasification performance were evaluated by exergy and energy analyses. The results showed that the exergy of MT-HR was 17.68 MJ/kg, which was higher than the raw HR and CT-HR, indicating the significant improvement for HR by MT. Meanwhile, the exergy of gasification syngas reached the highest as 7.93 MJ/h with MT, while and the exergy of tar was the lowest as 3.13 MJ/h. It was proved by energy analysis that MT could achieve self-powered in the integrated process, although MT consumed some energy. MT-gasification showed the best performance for electricity yield, due to MT could not only improved the gasification and combustion efficiency, but also reduce the negative influence of tar. This study provides a comprehensive evaluation for the application of MT, and it demonstrates the potential of MT as a promising pretreatment for thermal conversion of biomass waste.

Suggested Citation

  • Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006134
    DOI: 10.1016/j.apenergy.2022.119255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
    2. Ptasinski, Krzysztof J. & Prins, Mark J. & Pierik, Anke, 2007. "Exergetic evaluation of biomass gasification," Energy, Elsevier, vol. 32(4), pages 568-574.
    3. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    4. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
    6. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    7. Dong, Lei & Tao, Junyu & Zhang, Zhaoling & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2021. "Energy utilization and disposal of herb residue by an integrated energy conversion system: A pilot scale study," Energy, Elsevier, vol. 215(PB).
    8. Sun, Jing & Wang, Wenlong & Yue, Qinyan & Ma, Chunyuan & Zhang, Junsong & Zhao, Xiqiang & Song, Zhanlong, 2016. "Review on microwave–metal discharges and their applications in energy and industrial processes," Applied Energy, Elsevier, vol. 175(C), pages 141-157.
    9. Hu, Yukun & Wang, Jihong & Tan, CK & Sun, Chenggong & Liu, Hao, 2018. "Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor," Applied Energy, Elsevier, vol. 227(C), pages 168-179.
    10. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    2. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Qin, Linbo & Zhu, Shiquan & Xu, Zhe & Zhao, Bo & Chen, Wangsheng & Zhang, Qiang & Han, Jun, 2023. "Technical feasibility and sensitivity analysis of medical waste gasification by the converter gas," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    3. Sun, Jing & Wang, Qing & Wang, Wenlong & Wang, Ke, 2018. "Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges," Energy, Elsevier, vol. 155(C), pages 815-823.
    4. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    5. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    7. Cheng Yang & Kanfeng Ying & Fan Yang & Huanghu Peng & Zezhou Chen, 2022. "Simulation on the Electric and Thermal Fields of a Microwave Reactor for Ex Situ Biomass Tar Elimination," Energies, MDPI, vol. 15(11), pages 1-12, June.
    8. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    10. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    11. Martínez-Lera, Susana & Pallarés Ranz, Javier, 2016. "On the development of a wood gasification modelling approach with special emphasis on primary devolatilization and tar formation and destruction phenomena," Energy, Elsevier, vol. 113(C), pages 643-652.
    12. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    13. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    14. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    15. Gawlik, Bernd Manfred & Sobiecka, Elzbieta & Vaccaro, Stefano & Ciceri, Giovanni, 2007. "Quality management organisation, validation of standards, developments and inquiries for solid-recovered fuels--An overview on the QUOVADIS-Project," Energy Policy, Elsevier, vol. 35(12), pages 6293-6298, December.
    16. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    17. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    18. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    19. Li, Longzhi & Tan, Yongdong & Sun, Jifu & Zhang, Yue & Zhang, Lianjie & Deng, Yue & Cai, Dongqiang & Song, Zhanlong & Zou, Guifu & Bai, Yonghui, 2021. "Characteristics and kinetic analysis of pyrolysis of forestry waste promoted by microwave-metal interaction," Energy, Elsevier, vol. 232(C).
    20. Owen Sedej & Eric Mbonimpa & Trevor Sleight & Jeremy Slagley, 2022. "Application of Machine Learning to Predict the Performance of an EMIPG Reactor Using Data from Numerical Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.