IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp91-106.html
   My bibliography  Save this article

Techno-economic evaluation of different hybridization schemes for a solar thermal/gas power plant

Author

Listed:
  • Rashid, Khalid
  • Safdarnejad, Seyed Mostafa
  • Ellingwood, Kevin
  • Powell, Kody M.

Abstract

Stabilizing the effects of greenhouse gases emissions on the atmosphere is a key step towards solving the global climate change problem. The power industry is one of the major sectors for greenhouse gas emissions. One solution to help reduce emissions from the existing power plants is to hybridize them with renewable energy sources. Solar energy is a leading source among alternative energy sources due to its technological advancement and declining cost in recent years. Concentrated solar power is a mature solar technology that can play a major role in large-scale power production. Hybridizing concentrated solar power plants with natural gas plants can ensure a continuous and reliable power supply in meeting electricity demand. This study investigates the environmental impact and techno-economics of a hybrid natural gas/solar plant with a power production capacity of 140 MW. The system uses a tightly integrated design and a robust control scheme to exploit the synergies between natural gas and solar thermal power. A techno-economic comparison is made between the hybrid plant and two separate plants (solar thermal and natural gas) that are only connected at the grid-level as well as to a stand-alone natural gas plant. Simulation results demonstrate that the solar-to-electric efficiency and solar fraction in a plant-level hybrid unit increase by 77.7 and 69.6%, respectively, when compared to a grid-level hybrid unit. A sensitivity analysis on the plant economics reveals that a value of $146.2/tonne for the carbon tax and a renewable energy credit of 56.94% are required for the plant-level hybrid unit to break-even with the levelized cost of electricity production from the stand-alone natural gas plant. In contrast, the grid-level hybrid unit does not break-even with the levelized cost of electricity production from the natural gas plant within a reasonable range of carbon tax and renewable energy credit. The sensitivity analysis also demonstrates that a carbon tax will be a better leveraging tool to encourage greenhouse gas emissions reductions than the renewable energy credit. A life cycle assessment is also performed for the three systems considered in this work, while using their dynamic models and the relevant control schemes. This study shows that the greenhouse gas emissions in the grid-level hybrid unit and natural gas plant are 9.28% and 23.78%, respectively, higher than the plant-level hybrid unit. Hence, the plant-level hybrid unit emits the least amount of greenhouse gases while demonstrating the maximum synergistic benefits from hybridization.

Suggested Citation

  • Rashid, Khalid & Safdarnejad, Seyed Mostafa & Ellingwood, Kevin & Powell, Kody M., 2019. "Techno-economic evaluation of different hybridization schemes for a solar thermal/gas power plant," Energy, Elsevier, vol. 181(C), pages 91-106.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:91-106
    DOI: 10.1016/j.energy.2019.05.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    2. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    3. Pierre, Cariou & Olivier, Faury, 2015. "Relevance of the Northern Sea Route (NSR) for bulk shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 337-346.
    4. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    5. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
    6. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    7. Pierre Cariou & Olivier Faury, 2015. "Relevance of the Northern Sea Route (NSR) for bulk shipping," Post-Print hal-02077034, HAL.
    8. McTigue, Joshua D. & Castro, Jose & Mungas, Greg & Kramer, Nick & King, John & Turchi, Craig & Zhu, Guangdong, 2018. "Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability," Applied Energy, Elsevier, vol. 228(C), pages 1837-1852.
    9. John J. Burkhardt & Garvin Heath & Elliot Cohen, 2012. "Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 93-109, April.
    10. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    11. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Baxter, Larry L., 2015. "Plant-level dynamic optimization of Cryogenic Carbon Capture with conventional and renewable power sources," Applied Energy, Elsevier, vol. 149(C), pages 354-366.
    12. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    13. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    14. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.
    15. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    16. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    17. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    18. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    19. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Icaro Figueiredo Vilasboas & Victor Gabriel Sousa Fagundes dos Santos & Vinicius Oliveira Braz de Morais & Armando Sá Ribeiro & Julio Augusto Mendes da Silva, 2022. "AERES: Thermodynamic and Economic Optimization Software for Hybrid Solar–Waste Heat Systems," Energies, MDPI, vol. 15(12), pages 1-14, June.
    2. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. Cristóbal Villasante & Saioa Herrero & Marcelino Sánchez & Iñigo Pagola & Adrian Peña & David Olasolo & Ana Bernardos, 2020. "Low-Cost Solar Electricity Using Stationary Solar Fields; Technology Potential and Practical Implementation Challenges to Be Overcome. Outcomes from H2020 MOSAIC Project," Energies, MDPI, vol. 13(7), pages 1-14, April.
    4. Ellingwood, Kevin & Mohammadi, Kasra & Powell, Kody, 2020. "Dynamic optimization and economic evaluation of flexible heat integration in a hybrid concentrated solar power plant," Applied Energy, Elsevier, vol. 276(C).
    5. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    6. Weiguang Su & Yilin Li & Tongyu Zhou & Jo Darkwa & Georgios Kokogiannakis & Zhao Li, 2019. "Microencapsulation of Paraffin with Poly (Urea Methacrylate) Shell for Solar Water Heater," Energies, MDPI, vol. 12(18), pages 1-9, September.
    7. Emilia Koper & Andrzej Kochan, 2020. "Testing the Smooth Driving of a Train Using a Neural Network," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    8. Thomas Kemmler & Bernd Thomas, 2020. "Design of Heat-Pump Systems for Single- and Multi-Family Houses using a Heuristic Scheduling for the Optimization of PV Self-Consumption," Energies, MDPI, vol. 13(5), pages 1-18, March.
    9. Jawad Ahmad & Alessandro Ciocia & Stefania Fichera & Ali Faisal Murtaza & Filippo Spertino, 2019. "Detection of Typical Defects in Silicon Photovoltaic Modules and Application for Plants with Distributed MPPT Configuration," Energies, MDPI, vol. 12(23), pages 1-26, November.
    10. Rana Pratap Singh & Hans Peter Nachtnebel & Nadejda Komendantova, 2020. "Deployment of Hydropower in Nepal: Multiple Stakeholders’ Perspectives," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    11. Ayman Temraz & Falah Alobaid & Jerome Link & Ahmed Elweteedy & Bernd Epple, 2021. "Development and Validation of a Dynamic Simulation Model for an Integrated Solar Combined Cycle Power Plant," Energies, MDPI, vol. 14(11), pages 1-23, June.
    12. Alfredo Nespoli & Andrea Matteri & Silvia Pretto & Luca De Ciechi & Emanuele Ogliari, 2021. "Battery Sizing for Different Loads and RES Production Scenarios through Unsupervised Clustering Methods," Forecasting, MDPI, vol. 3(4), pages 1-19, September.
    13. Iván Acosta-Pazmiño & Carlos Rivera-Solorio & Miguel Gijón-Rivera, 2020. "Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico," Energies, MDPI, vol. 13(21), pages 1-17, October.
    14. Wei-Min Lin & Keh-Chin Chang & Kung-Ming Chung, 2019. "The Impact of Subsidy Programs for Solar Thermal Applications: A Case Study for a Remote Island," Energies, MDPI, vol. 12(20), pages 1-11, October.
    15. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO2-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    2. Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    6. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    7. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    8. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    9. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    11. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    14. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    15. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    16. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    17. Eduardo A. Pina & Luis M. Serra & Miguel A. Lozano & Adrián Hernández & Ana Lázaro, 2020. "Comparative Analysis and Design of a Solar-Based Parabolic Trough–ORC Cogeneration Plant for a Commercial Center," Energies, MDPI, vol. 13(18), pages 1-29, September.
    18. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    19. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    20. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:91-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.