IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp321-330.html
   My bibliography  Save this article

Energy management of a household refrigerator using eutectic environmental friendly PCMs in a cascaded condition

Author

Listed:
  • Pirvaram, A.
  • Sadrameli, S.M.
  • Abdolmaleki, L.

Abstract

In this study, a series of experimental runs performed under different conditions in order to evaluate the effectiveness of a household refrigerator. Two eutectic phase change materials (PCMs) arranged in a cascade configuration have been tested on the performance of the system. The PCMs were placed on the back-side of the wire-and-tube condenser in a decreasing order of their melting temperatures along the refrigerant flow direction to achieve a high heat transfer rate and to reduce energy consumption. The operating characteristics of the novel refrigerator were studied and compared with the results of a refrigerator equipped with a single PCM and two ordinary refrigerators with and without measurement packages (M-packs). All the tests have been performed in standard condition in Philver Company in Tehran, Iran. For the novel refrigerator, the temperature of the condenser surface significantly decreased, which led to a lower condensing temperature during the refrigeration cycle and improved the coefficient of performance (COP). Also, the ratio of the on-time to the total experiment time was considerably shorter compared to the refrigerator equipped with a single PCM and two ordinary refrigerators. According to the results, integration of two different PCMs on the condenser surface in a cascade arrangement decreases the compressor work time percentage from 32.7 to 27.6, while this parameter was decreased to 29.6 with a single PCM. Finally, the energy consumption was reduced by 13% in the novel refrigerator whereas it was only reduced by 8% in the refrigerator equipped with a single PCM.

Suggested Citation

  • Pirvaram, A. & Sadrameli, S.M. & Abdolmaleki, L., 2019. "Energy management of a household refrigerator using eutectic environmental friendly PCMs in a cascaded condition," Energy, Elsevier, vol. 181(C), pages 321-330.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:321-330
    DOI: 10.1016/j.energy.2019.05.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Mei, Bao-Jun & Liu, Yi-Ning & Huang, Yong-Hua & Yuan, Xu-Dong, 2011. "A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation," Energy, Elsevier, vol. 36(10), pages 5797-5804.
    2. Wang, Peilun & Wang, Xiang & Huang, Yun & Li, Chuan & Peng, Zhijian & Ding, Yulong, 2015. "Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)," Applied Energy, Elsevier, vol. 142(C), pages 328-336.
    3. Pan, Chunjian & Vermaak, Natasha & Romero, Carlos & Neti, Sudhakar & Hoenig, Sean & Chen, Chien-Hua & Bonner, Richard, 2018. "Cost estimation and sensitivity analysis of a latent thermal energy storage system for supplementary cooling of air cooled condensers," Applied Energy, Elsevier, vol. 224(C), pages 52-68.
    4. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    5. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    6. Cheng, Wen-Long & Yuan, Xu-Dong, 2013. "Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers," Energy, Elsevier, vol. 59(C), pages 265-276.
    7. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    2. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    3. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    4. Vittorio Tola & Simone Arena & Mario Cascetta & Giorgio Cau, 2020. "Numerical Investigation on a Packed-Bed LHTES System Integrated into a Micro Electrical and Thermal Grid," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Elfeky, K.E. & Mohammed, A.G. & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2020. "Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants," Applied Energy, Elsevier, vol. 267(C).
    6. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2021. "Cycle cut-off criterion effect on the performance of cascaded, sensible, combined sensible-latent heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 230(C).
    7. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    8. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    9. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Zheng, Ziao & Huang, Bin & Lu, Gaofeng & Zhai, Xiaoqiang, 2022. "Design and optimization of an air-based phase change cold storage unit through cascaded construction for emergency cooling in IDC," Energy, Elsevier, vol. 241(C).
    11. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    12. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    13. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    14. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
    15. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    16. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    17. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2022. "Thermo-economic evaluation of PCM layer thickness change on the performance of the hybrid heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 253(C).
    18. Reyes, A. & Pailahueque, N. & Henríquez-Vargas, L. & Vásquez, J. & Sepúlveda, F., 2019. "Analysis of a multistage solar thermal energy accumulator," Renewable Energy, Elsevier, vol. 136(C), pages 621-631.
    19. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    20. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:321-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.