IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp636-651.html
   My bibliography  Save this article

Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln

Author

Listed:
  • Delpech, Bertrand
  • Axcell, Brian
  • Jouhara, Hussam

Abstract

Following the energy crisis in the 1980s, energy-saving technologies have been investigated and implemented in order to decrease the energy consumption and greenhouse gas emissions of major industrial sectors such as metals, ceramics and concrete. The ceramics industry is still, in Europe, one of the major energy consuming manufacturing processes. Hence energy saving solutions have been investigated in order to decrease the energy consumption of the manufacturing process. The main energy-consuming process is the firing stage with more than 50% of all of the energy required for the process. The energy used during the firing stage is then released during the cooling stage. To improve the heat recovered during the cooling stage, a radiative heat pipe ceiling has been investigated. The heat recovered during the cooling stage is then sent to the drying stage. The proposed system is composed of a radiative heat pipe, a kiln and a ceramics heater. The radiative heat pipe is made of ten parallel pipes of 28 mm diameter and a wall thickness of 2 mm the tubes are connected at the bottom by a 28 mm pipe and a condenser section of 50 mm the condenser is a shell and tube system with 9 pipes of 10 mm. The system was cooled by water. The radiative heat pipe has been tested at different flow rate and ceramics heater temperature. The experimental results shown that the radiative heat pipe was able to recover heat using radiation and natural convection in an enclosed kiln. The system was able to recover up to 4 kW. This paper describes this innovative solution for recovering heat from the cooling stage of an earth roller kiln for tile ceramics manufacturing, transformed into hot clean air for the drying stage of the ceramics manufacturing process.

Suggested Citation

  • Delpech, Bertrand & Axcell, Brian & Jouhara, Hussam, 2019. "Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln," Energy, Elsevier, vol. 170(C), pages 636-651.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:636-651
    DOI: 10.1016/j.energy.2018.12.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    2. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
    3. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    4. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    5. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    6. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. E. Khalil & Anne P. M. Velenturf & Masoud Ahmadinia & Shaowei Zhang, 2023. "Context Analysis for Transformative Change in the Ceramic Industry," Sustainability, MDPI, vol. 15(16), pages 1-25, August.
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    4. Ju O Kang & Sung Chul Kim, 2019. "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery from a Billet Casting Process," Energies, MDPI, vol. 12(14), pages 1-13, July.
    5. Guichet, Valentin & Delpech, Bertrand & Khordehgah, Navid & Jouhara, Hussam, 2022. "Experimental and theoretical investigation of the influence of heat transfer rate on the thermal performance of a multi-channel flat heat pipe," Energy, Elsevier, vol. 250(C).
    6. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    7. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    8. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    9. Alizadeh, Araz & Ghadamian, Hossein & Aminy, Mohammad & Hoseinzadeh, Siamak & Khodayar Sahebi, Hamed & Sohani, Ali, 2022. "An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    2. Almahmoud, Sulaiman & Jouhara, Hussam, 2019. "Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger," Energy, Elsevier, vol. 174(C), pages 972-984.
    3. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    4. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    5. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    6. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    7. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    9. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    10. Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
    11. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    12. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    13. Malinauskaite, Jurgita & Jouhara, Hussam & Egilegor, Bakartxo & Al-Mansour, Fouad & Ahmad, Lujean & Pusnik, Matevz, 2020. "Energy efficiency in the industrial sector in the EU, Slovenia, and Spain," Energy, Elsevier, vol. 208(C).
    14. Ruivo, Luís & Russo, Michael & Lourenço, Rúben & Pio, Daniel, 2021. "Energy management in the Portuguese ceramic industry: Analysis of real-world factories," Energy, Elsevier, vol. 237(C).
    15. Ju O Kang & Sung Chul Kim, 2019. "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery from a Billet Casting Process," Energies, MDPI, vol. 12(14), pages 1-13, July.
    16. Jouhara, Hussam & Bertrand, Delpech & Axcell, Brian & Montorsi, Luca & Venturelli, Matteo & Almahmoud, Sulaiman & Milani, Massimo & Ahmad, Lujean & Chauhan, Amisha, 2021. "Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery," Energy, Elsevier, vol. 223(C).
    17. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    18. Łukasz Amanowicz, 2020. "Controlling the Thermal Power of a Wall Heating Panel with Heat Pipes by Changing the Mass Flowrate and Temperature of Supplying Water—Experimental Investigations," Energies, MDPI, vol. 13(24), pages 1-18, December.
    19. Pradeep, N. & Reddy, K.S., 2022. "Design and investigation of solar cogeneration system with packed bed thermal energy storage for ceramic industry," Renewable Energy, Elsevier, vol. 192(C), pages 243-263.
    20. Khordehgah, N. & Żabnieńska-Góra, A. & Jouhara, H., 2021. "Analytical modelling of a photovoltaics-thermal technology combined with thermal and electrical storage systems," Renewable Energy, Elsevier, vol. 165(P1), pages 350-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:636-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.