IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp1151-1169.html
   My bibliography  Save this article

Multi-level and multi-granularity energy efficiency diagnosis scheme for ethylene production process

Author

Listed:
  • Gong, Shixin
  • Shao, Cheng
  • Zhu, Li

Abstract

The overall energy efficiency level of ethylene production process not only is influenced by the input energy mediums and output products, but also closely dependent on the operation status of the internal phases in the process. Traditionally, the energy efficiency diagnosis strategies mostly regard the ethylene production process as a black box, and only care about the influence caused by input and output factors, regardless of the interactions effect resulted from the internal subprocess and equipment. Therefore, to improve the traditional energy efficiency diagnosis schemes and extract the potential energy-saving factors, the deep analysis of the internal operation phases is necessary. Considering the large-scale and multi-dimensional characters of ethylene production process, a multi-level and multi-granularity energy efficiency diagnosis scheme is proposed in this paper. First, based on the analysis of energy flow, the layer classification for diagnosis boundary is implemented and the key energy-consuming facilities are determined in ethylene production process. Then, the corresponding three-level energy efficiency indicator system is established for benchmarking the energy efficiency level. Finally, the hierarchical energy efficiency diagnosis models are constructed based on two-stage and network data envelopment analysis to study the internal operation phases and find out the energy-saving factors. A practical Chinese ethylene plant is used to demonstrate the effectiveness of the proposed scheme. Not only is the energy efficiency level evaluated, but also the specific reasons resulting in the low energy efficiency level are found out, which provides the suggestions for saving energy and improving energy efficiency to the decision makers.

Suggested Citation

  • Gong, Shixin & Shao, Cheng & Zhu, Li, 2019. "Multi-level and multi-granularity energy efficiency diagnosis scheme for ethylene production process," Energy, Elsevier, vol. 170(C), pages 1151-1169.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1151-1169
    DOI: 10.1016/j.energy.2018.12.203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Meng, Di & Shao, Cheng & Zhu, Li, 2018. "Ethylene cracking furnace TOPSIS energy efficiency evaluation method based on dynamic energy efficiency baselines," Energy, Elsevier, vol. 156(C), pages 620-634.
    4. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.
    5. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    6. Wade D. Cook & Joe Zhu, 2015. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 2, pages 23-43, Springer.
    7. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
    8. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    9. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    10. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    11. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    12. Yingnan Liu & Ke Wang, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA-based decomposition analysis," CEEP-BIT Working Papers 83, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    13. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    14. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    15. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    16. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    17. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    18. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Shixin & Shao, Cheng & Zhu, Li, 2021. "Energy efficiency enhancement of energy and materials for ethylene production based on two-stage coordinated optimization scheme," Energy, Elsevier, vol. 217(C).
    2. Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
    3. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    4. Meng, Di & Shao, Cheng & Zhu, Li, 2022. "Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation," Energy, Elsevier, vol. 239(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    3. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    4. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    5. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    6. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    7. Geng, Zhiqiang & Zhang, Yanhui & Li, Chengfei & Han, Yongming & Cui, Yunfei & Yu, Bin, 2020. "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature," Energy, Elsevier, vol. 194(C).
    8. Linlin Zhao & Lin Zhang & Yong Zha, 2019. "Industrial Efficiency Evaluation in China: A Nonparametric Production-Frontier Approach," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Zhu, Li & Li, Zhe & Chen, Junghui, 2021. "Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants," Energy, Elsevier, vol. 230(C).
    11. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    12. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    13. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    14. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    15. Alexander Kramer & Fernando Morgado‐Dias, 2020. "Artificial intelligence in process control applications and energy saving: a review and outlook," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1133-1150, December.
    16. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    17. Shermeh, H. Ebrahimzadeh & Najafi, S.E. & Alavidoost, M.H., 2016. "A novel fuzzy network SBM model for data envelopment analysis: A case study in Iran regional power companies," Energy, Elsevier, vol. 112(C), pages 686-697.
    18. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    19. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    20. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1151-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.