IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp1248-1258.html
   My bibliography  Save this article

Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential

Author

Listed:
  • Mota-Babiloni, Adrián
  • Mateu-Royo, Carlos
  • Navarro-Esbrí, Joaquín
  • Molés, Francisco
  • Amat-Albuixech, Marta
  • Barragán-Cervera, Ángel

Abstract

High-temperature heat pumps (HTHPs) based on vapour compression can be used for industrial low-grade waste heat valorisation, which can aid in mitigating climate change. Currently, the performance of HTHPs operating at high-temperatures lifts is limited; therefore, advanced configurations become an opportunity for their utilisation. This paper presents an HTHP cascade with configurations of internal heat exchangers (IHXs) that uses low GWP refrigerants in both high-stage (HS) (HCFO-1233zd(E), HFO-1336mzz(Z), HCFO-1224yd(Z), and pentane) and low-stage (LS) (HFO-1234yf, HFO-1234ze(E), butane, isobutane, and propane) cycles. Prior to the analysis and presentation of results, an optimisation of the operating conditions is performed based on intermediate temperature and IHX effectiveness in both stage cycles. Results indicate that butane and isobutane appear to be the most convenient working LS fluids from the point of view of coefficient of performance (COP). The highest system performance is obtained using pentane and HFO-1336mzz(Z) in the HS cycle. Compared to third-generation refrigerants (HFC-245fa/HFC-134a), a slight COP improvement is obtained using HCFO-1233zd(E), and HCFO-1224yd(Z). A comparable or even lower volumetric flow rate at the HS compression suction is also observed. The use of pentane/butane achieved maximum COP (3.15), which is a 13% improvement compared to COP obtained when HFC-245fa/HFC-134a is employed.

Suggested Citation

  • Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:1248-1258
    DOI: 10.1016/j.energy.2018.09.188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mendoza-Miranda, J.M. & Mota-Babiloni, A. & Ramírez-Minguela, J.J. & Muñoz-Carpio, V.D. & Carrera-Rodríguez, M. & Navarro-Esbrí, J. & Salazar-Hernández, C., 2016. "Comparative evaluation of R1234yf, R1234ze(E) and R450A as alternatives to R134a in a variable speed reciprocating compressor," Energy, Elsevier, vol. 114(C), pages 753-766.
    2. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Barragán-Cervera, Ángel & Molés, Francisco & Peris, Bernardo, 2015. "Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternatives for R134a," Energy, Elsevier, vol. 90(P2), pages 1636-1644.
    3. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    4. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
    5. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    6. Navarro-Esbrí, Joaquín & Molés, Francisco & Peris, Bernardo & Mota-Babiloni, Adrián & Kontomaris, Konstantinos, 2017. "Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications," Energy, Elsevier, vol. 133(C), pages 79-89.
    7. Liu, Zhaoyong & Zhao, Li & Zhao, Xuezheng & Li, Hailong, 2012. "The occurrence of pinch point and its effects on the performance of high temperature heat pump," Applied Energy, Elsevier, vol. 97(C), pages 869-875.
    8. Yin, Xiaohong & Wang, Xinli & Li, Shaoyuan & Cai, Wenjian, 2016. "Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems," Energy, Elsevier, vol. 116(P1), pages 1006-1019.
    9. Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    10. Wu, Di & Hu, Bin & Wang, R.Z., 2018. "Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants," Renewable Energy, Elsevier, vol. 116(PA), pages 775-785.
    11. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    12. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    13. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    3. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    5. Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
    6. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    7. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    8. Giuseppe Emmi & Sara Bordignon & Laura Carnieletto & Michele De Carli & Fabio Poletto & Andrea Tarabotti & Davide Poletto & Antonio Galgaro & Giulia Mezzasalma & Adriana Bernardi, 2020. "A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants," Energies, MDPI, vol. 13(21), pages 1-18, October.
    9. Shiravi, Amir hossein & Ghanbarpour, Morteza & Palm, Bjorn, 2023. "Experimental evaluation of the effect of mechanical subcooling on a hydrocarbon heat pump system," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    2. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    4. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    5. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Giménez-Prades, P. & Navarro-Esbrí, J. & Arpagaus, C. & Fernández-Moreno, A. & Mota-Babiloni, A., 2022. "Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Bamigbetan, O. & Eikevik, T.M. & Nekså, P. & Bantle, M. & Schlemminger, C., 2019. "The development of a hydrocarbon high temperature heat pump for waste heat recovery," Energy, Elsevier, vol. 173(C), pages 1141-1153.
    11. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    12. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    13. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    15. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    17. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    18. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    19. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    20. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:1248-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.