IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp1016-1028.html
   My bibliography  Save this article

Performance investigation and energy optimization of a thermoelectric generator for a mild hybrid vehicle

Author

Listed:
  • Wang, Ruochen
  • Yu, Wei
  • Meng, Xiangpeng

Abstract

A thermoelectric generator (TEG) can effectively convert exhaust waste heat into electric energy without chemical reaction, which has favorable prospects for mild hybrid vehicle application. However, introduction of TEG into vehicle energy flow may drive the redesign of existing energy management strategy, the vehicle should be optimized by an amending mode transition strategy to accommodate the addition of the TEG. In this study, a novel TEG designed for a mild hybrid vehicle is proposed. The prototype is manufactured, and the electricity-generating capacity is tested by bench test. The net power of the TEG is modeled, and the parasitic power loss is analyzed. Considering the comprehensive influence of the TEG on the energy conservation and consumption of the vehicle, the optimal vehicle system efficiency is determined to achieve the refined mode transition strategy. Comparative analyses under different driving cycles are conducted to investigate the effectiveness of mode transition strategy and the performance of the TEG. The results indicate that the proposed mode transition strategy can increase both the average engine efficiency and the average exhaust temperature. Moreover, the fuel economy can be improved by 3.64% and 2.17%, depending on the driving cycles, along with a slight reduction in exhaust emissions.

Suggested Citation

  • Wang, Ruochen & Yu, Wei & Meng, Xiangpeng, 2018. "Performance investigation and energy optimization of a thermoelectric generator for a mild hybrid vehicle," Energy, Elsevier, vol. 162(C), pages 1016-1028.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1016-1028
    DOI: 10.1016/j.energy.2018.08.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsiao, Y.Y. & Chang, W.C. & Chen, S.L., 2010. "A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine," Energy, Elsevier, vol. 35(3), pages 1447-1454.
    2. Kim, Tae Young & Kim, Junghwan, 2018. "Assessment of the energy recovery potential of a thermoelectric generator system for passenger vehicles under various drive cycles," Energy, Elsevier, vol. 143(C), pages 363-371.
    3. Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
    4. Patyk, Andreas, 2013. "Thermoelectric generators for efficiency improvement of power generation by motor generators – Environmental and economic perspectives," Applied Energy, Elsevier, vol. 102(C), pages 1448-1457.
    5. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    6. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    7. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    2. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Performance optimization of a converging thermoelectric generator system via multiphysics simulations," Energy, Elsevier, vol. 204(C).
    3. Baek, Seungju & Lee, Sanguk & Shin, Myunghwan & Lee, Jongtae & Lee, Kihyung, 2022. "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG," Energy, Elsevier, vol. 239(PC).
    4. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    5. Ju O Kang & Sung Chul Kim, 2019. "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery from a Billet Casting Process," Energies, MDPI, vol. 12(14), pages 1-13, July.
    6. Buchalik, Ryszard & Nowak, Grzegorz & Nowak, Iwona, 2021. "Mathematical model of a thermoelectric system based on steady- and rapid-state measurements," Applied Energy, Elsevier, vol. 293(C).
    7. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Wittek, Karsten, 2020. "Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine," Energy, Elsevier, vol. 195(C).
    8. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    9. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    10. Yu, Wei & Wang, Ruochen, 2019. "Development and performance evaluation of a comprehensive automotive energy recovery system with a refined energy management strategy," Energy, Elsevier, vol. 189(C).
    11. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    12. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    13. Lan, Song & Stobart, Richard & Wang, Xiaonan, 2022. "Matching and optimization for a thermoelectric generator applied in an extended-range electric vehicle for waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    14. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2019. "Performance evaluation of a novel thermoelectric module with BiSbTeSe-based material," Applied Energy, Elsevier, vol. 238(C), pages 1299-1311.
    15. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    2. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    3. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & Montoro, L. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2017. "Transient behavior under a normalized driving cycle of an automotive thermoelectric generator," Applied Energy, Elsevier, vol. 206(C), pages 1282-1296.
    4. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    5. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    6. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    7. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    8. Chen, Leisheng & Lee, Jaeyoung, 2015. "Effect of pulsed heat power on the thermal and electrical performances of a thermoelectric generator," Applied Energy, Elsevier, vol. 150(C), pages 138-149.
    9. Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
    10. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
    11. Cheng-You Chen & Kung-Wen Du & Yi-Cheng Chung & Chun-I Wu, 2024. "Advancements in Thermoelectric Generator Design: Exploring Heat Exchanger Efficiency and Material Properties," Energies, MDPI, vol. 17(2), pages 1-25, January.
    12. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    13. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    14. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    15. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Applied Energy, Elsevier, vol. 88(12), pages 5173-5179.
    16. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    17. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    18. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
    19. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    20. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1016-1028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.