IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp865-873.html
   My bibliography  Save this article

Multistep sequestration and storage of CO2 to form valuable products using forsterite

Author

Listed:
  • Raza, Waseem
  • Raza, Nadeem
  • Agbe, Henry
  • Kumar, R.V.
  • Kim, Ki-Hyun
  • Yang, Jianhua

Abstract

The potential use of mineralogical carbonation is greatly acknowledged not only in reducing CO2 emissions through carbon capture and storage (CCS) but also in producing industrially viable products. The direct carbonation of stable silicate minerals by supercritical CO2 is unrealistic due to the low conversion efficiencies. The natural abundance of silicate minerals (e.g., olivine) is theoretically sufficient to fix the entire quantity of man-made CO2 emissions, while carbonation of sorbents obtained from the dissolution of silicate rocks could proceed in a multistep (or continuous) process. In this work, the optimum experimental conditions for a multistep procedure of sequestration of minerals and conversion of CO2 into valuable products were investigated using synthetic forsterite. In this research, magnesium sulfate obtained from the dissolution of forsterite in aqueous H2SO4 was successfully carbonated to produce valuable byproducts (e.g., silica and hydrates of magnesite) with an economical carbonation as a means of CO2 mitigation. Hydromagnesite, while being commercially applied in various fields (e.g., fire retardation and catalysis), can be transformed to magnesite which is stable for millions of years.

Suggested Citation

  • Raza, Waseem & Raza, Nadeem & Agbe, Henry & Kumar, R.V. & Kim, Ki-Hyun & Yang, Jianhua, 2018. "Multistep sequestration and storage of CO2 to form valuable products using forsterite," Energy, Elsevier, vol. 155(C), pages 865-873.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:865-873
    DOI: 10.1016/j.energy.2018.05.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    2. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    3. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    4. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2009. "Fixation of carbon dioxide by producing hydromagnesite from serpentinite," Applied Energy, Elsevier, vol. 86(2), pages 214-218, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Wei, Yi & Yang, Jing & Xiang, Huaping & Ma, Liping & Zhang, Wei & Wang, Lichun & Peng, Yuhui & Liu, Hongpan, 2019. "Syngas production by chemical looping gasification using Fe supported on phosphogypsum compound oxygen carrier," Energy, Elsevier, vol. 168(C), pages 126-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    2. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    3. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    4. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    5. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    6. Sefa Yalcin & Alp Er Ş. Konukman & Adnan Midilli, 2020. "A perspective on fossil fuel based flue gas emission reduction technologies," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 664-677, August.
    7. Eom, Seongyong & Na, Sangkyung & Ahn, Seongyool & Choi, Gyungmin, 2022. "Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system," Energy, Elsevier, vol. 245(C).
    8. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    10. Abdulrasheed, A.A. & Jalil, A.A. & Triwahyono, S. & Zaini, M.A.A. & Gambo, Y. & Ibrahim, M., 2018. "Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1067-1085.
    11. Mehdi Azadi & Mansour Edraki & Faezeh Farhang & Jiwhan Ahn, 2019. "Opportunities for Mineral Carbonation in Australia’s Mining Industry," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    12. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    13. Kyriaki Kelektsoglou, 2018. "Carbon Capture and Storage: A Review of Mineral Storage of CO 2 in Greece," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    14. Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
    15. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    16. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    17. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    18. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    19. Waseem Yousaf & Muhammad Sajjad Hussain & Anam Aziz, 2021. "The Role of Green Energy on Reducing the Carbon Emission in ASEAN Countries," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 34-39, June.
    20. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:865-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.