IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4400-d185303.html
   My bibliography  Save this article

Carbon Capture and Storage: A Review of Mineral Storage of CO 2 in Greece

Author

Listed:
  • Kyriaki Kelektsoglou

    (Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece)

Abstract

As the demand for the reduction of global emissions of carbon dioxide (CO 2 ) increases, the need for anthropogenic CO 2 emission reductions becomes urgent. One promising technology to this end, is carbon capture and storage (CCS). This paper aims to provide the current state-of-the-art of CO 2 capure, transport, and storage and focuses on mineral carbonation, a novel method for safe and permanent CO 2 sequestration which is based on the reaction of CO 2 with calcium or magnesium oxides or hydroxides to form stable carbonate materials. Current commercial scale projects of CCS around Europe are outlined, demonstrating that only three of them are in operation, and twenty-one of them are in pilot phase, including the only one case of mineral carbonation in Europe the case of CarbFix in Iceland. This paper considers the necessity of CO 2 sequestration in Greece as emissions of about 64.6 million tons of CO 2 annually, originate from the lignite fired power plants. A real case study concerning the mineral storage of CO 2 in Greece has been conducted, demonstrating the applicability of several geological forms around Greece for mineral carbonation. The study indicates that Mount Pindos ophiolite and Vourinos ophiolite complex could be a promising means of CO 2 sequestration with mineral carbonation. Further studies are needed in order to confirm this aspect.

Suggested Citation

  • Kyriaki Kelektsoglou, 2018. "Carbon Capture and Storage: A Review of Mineral Storage of CO 2 in Greece," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4400-:d:185303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    2. Bing Bai & Xiaochun Li & Haiqing Wu & Yongsheng Wang & Mingze Liu, 2017. "A methodology for designing maximum allowable wellhead pressure for CO 2 injection: application to the Shenhua CCS demonstration project, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 158-181, February.
    3. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2015. "Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 288-294.
    4. Vatalis, Konstantinos I. & Laaksonen, Aatto & Charalampides, George & Benetis, Nikolas P., 2012. "Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3391-3400.
    5. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    6. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    7. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    8. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyeju Kim & Junjie Pei & Salman Siddique & Jeong-Gook Jang, 2021. "Effects of the Curing Conditions on the Carbonation Curing Efficiency of Ordinary Portland Cement and a Belite-Rich Cement Mortar," Sustainability, MDPI, vol. 13(9), pages 1-11, May.
    2. Apostolos Arvanitis & Petros Koutsovitis & Nikolaos Koukouzas & Pavlos Tyrologou & Dimitris Karapanos & Christos Karkalis & Panagiotis Pomonis, 2020. "Potential Sites for Underground Energy and CO 2 Storage in Greece: A Geological and Petrological Approach," Energies, MDPI, vol. 13(11), pages 1-23, May.
    3. Pavel Tcvetkov & Alexey Cherepovitsyn & Sergey Fedoseev, 2019. "The Changing Role of CO 2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    4. Jing An & Richard S. Middleton & Yingnan Li, 2019. "Environmental Performance Analysis of Cement Production with CO 2 Capture and Storage Technology in a Life-Cycle Perspective," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    5. Hugo Fantucci & Jaspreet S. Sidhu & Rafael M. Santos, 2019. "Mineral Carbonation as an Educational Investigation of Green Chemical Engineering Design," Sustainability, MDPI, vol. 11(15), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    3. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    4. Raza, Waseem & Raza, Nadeem & Agbe, Henry & Kumar, R.V. & Kim, Ki-Hyun & Yang, Jianhua, 2018. "Multistep sequestration and storage of CO2 to form valuable products using forsterite," Energy, Elsevier, vol. 155(C), pages 865-873.
    5. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Hon Chung Lau & Seeram Ramakrishna & Kai Zhang & Mohamed Ziaudeen Shahul Hameed, 2021. "A Decarbonization Roadmap for Singapore and Its Energy Policy Implications," Energies, MDPI, vol. 14(20), pages 1-23, October.
    7. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    8. Zhang, Shuai & Zhuang, Yu & Liu, Linlin & Zhang, Lei & Du, Jian, 2019. "Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    10. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    11. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    12. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    13. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    14. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    15. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    16. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    17. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    18. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Narita, Daiju & Klepper, Gernot, 2015. "Economic incentives for carbon dioxide storage under uncertainty: A real options analysis," Kiel Working Papers 2002, Kiel Institute for the World Economy (IfW Kiel).
    20. García, Jorge H. & Torvanger, Asbjørn, 2019. "Carbon leakage from geological storage sites: Implications for carbon trading," Energy Policy, Elsevier, vol. 127(C), pages 320-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4400-:d:185303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.