IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp369-386.html
   My bibliography  Save this article

Modular simulation of cogeneration system based on absorption heat exchange (Co-ah)

Author

Listed:
  • Yang, Bo
  • Jiang, Yi
  • Fu, Lin
  • Zhang, Shigang

Abstract

Restricted by the return water temperature of district heating network, conventional cogeneration plants cannot efficiently recover the low-grade waste heat of exhaust steam. A novel cogeneration technology based on absorption heat exchange (Co-ah) has been successfully applied to waste heat recovery of thermal power plants, enlarging the heating capacity of district heating network. In this paper, a modular simulation code is developed to simulate and analyze the complicated Co-ah system. The establishment and solution of system equations are accomplished automatically, so any changes in operating conditions or system configuration can be easily dealt with. The theoretical models are validated by the practical operating data. A comparison between the conventional cogeneration system and Co-ah system is made. With the help of the absorption heat pump, the Co-ah system recovers more waste heat from the exhaust steam and exhibits better exergetic and economic performances than the conventional system. The effects of three key parameters including back pressure, extract flow rate and extract pressure on cogeneration performances are analyzed in details, providing a guide for regulation strategies when operating conditions vary.

Suggested Citation

  • Yang, Bo & Jiang, Yi & Fu, Lin & Zhang, Shigang, 2018. "Modular simulation of cogeneration system based on absorption heat exchange (Co-ah)," Energy, Elsevier, vol. 153(C), pages 369-386.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:369-386
    DOI: 10.1016/j.energy.2018.04.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
    3. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    4. Gong, Mei & Werner, Sven, 2015. "An assessment of district heating research in China," Renewable Energy, Elsevier, vol. 84(C), pages 97-105.
    5. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.
    6. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    7. Zhang, Hongsheng & Zhao, Hongbin & Li, Zhenlin, 2016. "Thermodynamic performance study on solar-assisted absorption heat pump cogeneration system in the coal-fired power plant," Energy, Elsevier, vol. 116(P1), pages 942-955.
    8. Liu, Feng & Lyu, Tao & Pan, Li & Wang, Fei, 2017. "Influencing factors of public support for modern coal-fired power plant projects: An empirical study from China," Energy Policy, Elsevier, vol. 105(C), pages 398-406.
    9. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    2. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.
    2. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    3. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    4. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    5. Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
    6. Heng Chen & Zhen Qi & Qiao Chen & Yunyun Wu & Gang Xu & Yongping Yang, 2018. "Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit," Energies, MDPI, vol. 11(9), pages 1-16, September.
    7. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    8. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    9. Heng Chen & Jidong Xu & Yao Xiao & Zhen Qi & Gang Xu & Yongping Yang, 2018. "An Improved Heating System with Waste Pressure Utilization in a Combined Heat and Power Unit," Energies, MDPI, vol. 11(6), pages 1-20, June.
    10. Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
    11. Wei, Maolin & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2018. "Summer performance analysis of coal-based CCHP with new configurations comparing with separate system," Energy, Elsevier, vol. 143(C), pages 104-113.
    12. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    13. Zhao, Shifei & Ge, Zhihua & He, Jie & Wang, Chunlan & Yang, Yongping & Li, Peifeng, 2017. "A novel mechanism for exhaust steam waste heat recovery in combined heat and power unit," Applied Energy, Elsevier, vol. 204(C), pages 596-606.
    14. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    15. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    16. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
    17. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    18. Panowski, Marcin & Zarzycki, Robert & Kobyłecki, Rafał, 2021. "Conversion of steam power plant into cogeneration unit - Case study," Energy, Elsevier, vol. 231(C).
    19. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    20. Hinkelman, Kathryn & Anbarasu, Saranya & Wetter, Michael & Gautier, Antoine & Zuo, Wangda, 2022. "A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:369-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.