IDEAS home Printed from
   My bibliography  Save this article

The benefit of long-term high resolution wind data for electricity system analysis


  • Henckes, Philipp
  • Knaut, Andreas
  • Obermüller, Frank
  • Frank, Christopher


Future energy systems rely increasingly on the wind power supply. Understanding its characteristics is essential for the functioning of future electricity systems. Critical low wind situations may endanger the security of supply. So far, historical observations of wind power production are limited to few recent historical years and may not suffice to quantify the expected overall wind contribution, its variability, and its regional balancing effects for future electricity systems. With a novel long-term high-resolution wind power production dataset (hourly on a 6 × 6 km grid for 20 years) we derive new insights. First, we find advantages of our high-resolution dataset compared to previous studies. Second, we find a strong variation in annual wind production (variation of up to 14% for Germany). And third, we find a potential benefit from electricity exchange with neighboring countries in low wind conditions (for Germany in 81% of the low wind situations). The results are highly relevant for further investigation on the level of secured capacity or to identify optimal power transmission capacities within energy market modeling.

Suggested Citation

  • Henckes, Philipp & Knaut, Andreas & Obermüller, Frank & Frank, Christopher, 2018. "The benefit of long-term high resolution wind data for electricity system analysis," Energy, Elsevier, vol. 143(C), pages 934-942.
  • Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:934-942
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hagspiel, Simeon & Knaut, Andreas & Peter, Jakob, 2017. "Reliability in Multy-Regional Power Systems - Capacity Adequacy and the Role of Interconnectors," EWI Working Papers 2017-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 29 Jun 2018.
    2. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    3. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    4. Monforti, F. & Gaetani, M. & Vignati, E., 2016. "How synchronous is wind energy production among European countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1622-1638.
    5. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    6. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jung, Christopher & Schindler, Dirk, 2018. "On the inter-annual variability of wind energy generation – A case study from Germany," Applied Energy, Elsevier, vol. 230(C), pages 845-854.
    2. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    3. Klie, Leo & Madlener, Reinhard, 2024. "Concentration versus diversification: A spatial deployment approach to improve the economics of wind power," Energy Policy, Elsevier, vol. 185(C).
    4. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    5. Klie, Leo & Madlener, Reinhard, 2020. "Concentration Versus Diversification: A Spatial Deployment Approach to Improve the Economics of Wind Power," FCN Working Papers 2/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2021.
    6. Henckes, Philipp & Frank, Christopher & Küchler, Nils & Peter, Jakob & Wagner, Johannes, 2020. "Uncertainty estimation of investment planning models under high shares of renewables using reanalysis data," Energy, Elsevier, vol. 208(C).
    7. Frank, Christopher & Fiedler, Stephanie & Crewell, Susanne, 2021. "Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries," Renewable Energy, Elsevier, vol. 163(C), pages 674-684.
    8. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    10. Frank, Christopher W. & Pospichal, Bernhard & Wahl, Sabrina & Keller, Jan D. & Hense, Andreas & Crewell, Susanne, 2020. "The added value of high resolution regional reanalyses for wind power applications," Renewable Energy, Elsevier, vol. 148(C), pages 1094-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    2. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    3. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    4. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    5. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    6. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    7. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    8. Johann Baumgartner & Katharina Gruber & Sofia G. Simoes & Yves-Marie Saint-Drenan & Johannes Schmidt, 2020. "Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to," Energies, MDPI, vol. 13(9), pages 1-23, May.
    9. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    10. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    11. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    12. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    13. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    14. Henckes, Philipp & Frank, Christopher & Küchler, Nils & Peter, Jakob & Wagner, Johannes, 2020. "Uncertainty estimation of investment planning models under high shares of renewables using reanalysis data," Energy, Elsevier, vol. 208(C).
    15. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    16. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    17. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    18. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781,
    19. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    20. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:934-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.