IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1989-1997.html
   My bibliography  Save this article

Chromium–tungsten–manganese oxides for synthesis of fatty acid methyl ester via esterification of palm fatty acid distillate

Author

Listed:
  • Wan, Zuraida
  • Lim, J.K.
  • Hameed, B.H.

Abstract

Solid catalysts of chromium–tungsten–manganese oxides were prepared and used to synthesize fatty acid methyl ester (FAME) through esterification of palm fatty acid distillate (PFAD). Experiments were conducted in a batch reactor at a temperature range of 130–190 °C. The physical and chemical properties of the catalysts were characterized by Brunauer–Emmet–Teller, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The treatment conditions during catalyst preparation, effect of reaction parameters, and catalyst stability were investigated. The catalyst (CrWMnO2) was the most active with maximum FAME content of 85% at optimal reaction conditions of 170 °C reaction temperature for 3 h, methanol-to-PFAD molar ratio of 3:1, catalyst dosage of 1.5 wt.%, and reusability of catalyst for several cycles. Results showed that CrWMnO2 is a potential catalyst for FAME synthesis from feedstock containing high free fatty acid.

Suggested Citation

  • Wan, Zuraida & Lim, J.K. & Hameed, B.H., 2017. "Chromium–tungsten–manganese oxides for synthesis of fatty acid methyl ester via esterification of palm fatty acid distillate," Energy, Elsevier, vol. 141(C), pages 1989-1997.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1989-1997
    DOI: 10.1016/j.energy.2017.11.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
    2. Almeida, T.A. & Rodrigues, I.A. & Estrela, T.S. & Nunes, C.N.F. & Machado, L.L. & Leão, K.V. & Barros, I.C.L. & Amorim, F.A.C. & Braga, V.S., 2016. "Synthesis of ethyl biodiesel from soybean oil, frying oil and chicken fat, using catalysts based on vanadium pentoxide," Energy, Elsevier, vol. 97(C), pages 528-533.
    3. Guldhe, Abhishek & Moura, Carla V.R. & Singh, Poonam & Rawat, Ismail & Moura, Edmilson M. & Sharma, Yogesh & Bux, Faizal, 2017. "Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst," Renewable Energy, Elsevier, vol. 105(C), pages 175-182.
    4. Thitsartarn, Warintorn & Maneerung, Thawatchai & Kawi, Sibudjing, 2015. "Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production," Energy, Elsevier, vol. 89(C), pages 946-956.
    5. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    6. Yan, Fang & Yuan, Zhenhong & Lu, Pengmei & Luo, Wen & Yang, Lingmei & Deng, Li, 2011. "Fe–Zn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil," Renewable Energy, Elsevier, vol. 36(7), pages 2026-2031.
    7. Xue, Bao-jin & Luo, Jia & Zhang, Fan & Fang, Zhen, 2014. "Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst," Energy, Elsevier, vol. 68(C), pages 584-591.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud, Hala R. & El-Molla, Sahar A. & Ibrahim, Marwa M., 2020. "Biodiesel production via stearic acid esterification over mesoporous ZrO2/SiO2 catalysts synthesized by surfactant-assisted sol-gel auto-combustion route," Renewable Energy, Elsevier, vol. 160(C), pages 42-51.
    2. Soltani, Soroush & Roodbar Shojaei, Taha & Khanian, Nasrin & Shean Yaw Choong, Thomas & Asim, Nilofar & Zhao, Yue, 2022. "Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst," Renewable Energy, Elsevier, vol. 187(C), pages 760-773.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
    2. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
    3. Mahmoud, Hala R. & El-Molla, Sahar A. & Ibrahim, Marwa M., 2020. "Biodiesel production via stearic acid esterification over mesoporous ZrO2/SiO2 catalysts synthesized by surfactant-assisted sol-gel auto-combustion route," Renewable Energy, Elsevier, vol. 160(C), pages 42-51.
    4. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    5. Niu, Shengli & Zhang, Xiangyu & Ning, Yilin & Zhang, Yujiao & Qu, Tongxin & Hu, Xun & Gong, Zhiqiang & Lu, Chunmei, 2020. "Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 107-116.
    6. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    7. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    8. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    10. Liu, Kang & Wang, Rui & Yu, Meiqing, 2018. "An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production," Renewable Energy, Elsevier, vol. 127(C), pages 531-538.
    11. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    12. Gouda, Shiva Prasad & Ngaosuwan, Kanokwan & Assabumrungrat, Suttichai & Selvaraj, Manickam & Halder, Gopinath & Rokhum, Samuel Lalthazuala, 2022. "Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 197(C), pages 161-169.
    13. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    14. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    15. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    16. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    17. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    18. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar Dayal & Drogui, Patrick & Surampalli, Rao Y., 2016. "Ultrasonication aided biodiesel production from one-step and two-step transesterification of sludge derived lipid," Energy, Elsevier, vol. 94(C), pages 401-408.
    19. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    20. Inam Ullah Khan & Zhenhua Yan & Jun Chen, 2020. "Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil," Energies, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1989-1997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.