IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v136y2017icp90-99.html
   My bibliography  Save this article

Design and development of an hybrid light commercial vehicle

Author

Listed:
  • Millo, F.
  • Cubito, C.
  • Rolando, L.
  • Pautasso, E.
  • Servetto, E.

Abstract

Nowadays the powertrain hybridization represents one of the most promising solution for delivery companies to reduce the fuel expenditure and to meet the stringent requirements of low emissions urban zones. In the framework of the collaborative Italian Regional iDea (innovative Diesel engine applications) project, which aims to develop innovative technical solutions for a more sustainable mobility, this paper highlights the fuel economy potential along the NEDC (New European Driving Cycle) and WLTC (Worldwide harmonized Light duty Test Cycle) driving cycles of a Plug-in hybrid powertrain developed for a light duty delivery vehicle, showing possible improvements in terms of CO2 emission reductions of 23% and 11%, respectively. After this preliminary investigation on the hybridization benefits, which has been carried out through numerical simulations, and a brief description of the methodology used to size the hybrid powertrain main components, the article shortly presents the powertrain control strategy and the development process of the first prototype. Finally, the work focuses on the main results which have been achieved by the first vehicle prototype during an experimental campaign carried out on a chassis dynamometer.

Suggested Citation

  • Millo, F. & Cubito, C. & Rolando, L. & Pautasso, E. & Servetto, E., 2017. "Design and development of an hybrid light commercial vehicle," Energy, Elsevier, vol. 136(C), pages 90-99.
  • Handle: RePEc:eee:energy:v:136:y:2017:i:c:p:90-99
    DOI: 10.1016/j.energy.2016.04.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    2. Kromer, Matthew A. & Bandivadekar, Anup & Evans, Christopher, 2010. "Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector," Energy, Elsevier, vol. 35(1), pages 387-397.
    3. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    4. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    5. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
    6. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Day charging electric vehicles with excess solar electricity for a sustainable energy system," Energy, Elsevier, vol. 80(C), pages 263-274.
    7. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
    8. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    9. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    10. Armand Albergel & Erwan Segalou & Jean-Louis Routhier & Casimir de Rham, 2006. "Méthodologie pour un bilan environnemental physique du transport de marchandises en ville," Post-Print halshs-00113850, HAL.
    11. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    12. Wadud, Zia, 2016. "Diesel demand in the road freight sector in the UK: Estimates for different vehicle types," Applied Energy, Elsevier, vol. 165(C), pages 849-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2021. "A design methodology for selecting energy-efficient compound split e-CVT hybrid systems with planetary gearsets based on electric circulation," Energy, Elsevier, vol. 230(C).
    2. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    3. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    4. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2020. "Evaluation of driving performance and energy efficiency for a novel full hybrid system with dual-motor electric drive and integrated input- and output-split e-CVT," Energy, Elsevier, vol. 191(C).
    5. Tang, Xiaolin & Zhang, Dejiu & Liu, Teng & Khajepour, Amir & Yu, Haisheng & Wang, Hong, 2019. "Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process," Energy, Elsevier, vol. 166(C), pages 1181-1193.
    6. Letnik, Tomislav & Farina, Alessandro & Mencinger, Matej & Lupi, Marino & Božičnik, Stane, 2018. "Dynamic management of loading bays for energy efficient urban freight deliveries," Energy, Elsevier, vol. 159(C), pages 916-928.
    7. Matteo Repetto & Massimiliano Passalacqua & Luis Vaccaro & Mario Marchesoni & Alessandro Pini Prato, 2020. "Turbocompound Power Unit Modelling for a Supercapacitor-Based Series Hybrid Vehicle Application," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    2. Shokrzadeh, Shahab & Bibeau, Eric, 2016. "Sustainable integration of intermittent renewable energy and electrified light-duty transportation through repurposing batteries of plug-in electric vehicles," Energy, Elsevier, vol. 106(C), pages 701-711.
    3. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    4. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    5. Jinquan, Guo & Hongwen, He & Jiankun, Peng & Nana, Zhou, 2019. "A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 175(C), pages 378-392.
    6. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    7. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    8. Kannan, Ramachandran & Hirschberg, Stefan, 2016. "Interplay between electricity and transport sectors – Integrating the Swiss car fleet and electricity system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 514-531.
    9. Colmenar-Santos, Antonio & Borge-Diez, David & Ortega-Cabezas, Pedro Miguel & Míguez-Camiña, J.V., 2014. "Macro economic impact, reduction of fee deficit and profitability of a sustainable transport model based on electric mobility. Case study: City of León (Spain)," Energy, Elsevier, vol. 65(C), pages 303-318.
    10. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    11. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    12. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
    13. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    16. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    17. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    18. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    19. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    20. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:136:y:2017:i:c:p:90-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.