IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp352-360.html
   My bibliography  Save this article

Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion

Author

Listed:
  • Mao, Chunlan
  • Wang, Xiaojiao
  • Xi, Jianchao
  • Feng, Yongzhong
  • Ren, Guangxin

Abstract

Kinetic characteristics play an important role in anaerobic digestion system for representing biogas production performance, however, its relationship with anaerobic digestion process parameters (i. e., volatile fatty acids, total ammonia nitrogen, pH and total alkalinity) and operational conditions remains poorly understood. To illustrate the linkage of kinetic parameters with process parameters and swine manure content and initial pH, and the effects of swine manure content and initial pH on anaerobic digestion performance, substrate properties, accumulative biogas production, specific biogas production rate and process parameters were analyzed under different treatments. Additionally, the effects of swine manure and initial pH on hydrolysis constant, lag phase, biogas production potential and the maximum biogas production rate were investigated. The results revealed that volatile solid and C:N ratio were significantly decreased with swine manure content increased which were considered as operational conditions with initial pH following the linkage illustration. Furthermore, accumulative biogas production, biogas production rate, final pH, total ammonia nitrogen and hydrolysis constant were increased with swine manure content and initial pH increased, while volatile fatty acids and lag phase showed the opposite trend. The results showed that these operational conditions significantly influenced process parameters and kinetic parameters, with close correlations were observed. Lag phase closely correlated with VFA which was closely correlated with C:N ratio. Therefore, C:N ratio impacted kinetic parameters via effecting VFA, while initial pH directly influenced kinetic parameters. Meanwhile, the correlation of kinetic parameters with C:N ratio was stronger than initial pH. Therefore, C:N ratio should be an indicator for estimating process performance, time the bacteria's acclimatization to the new environment and biogas production. Taken together, these findings provide a scientific theory for estimating anaerobic digestion performance.

Suggested Citation

  • Mao, Chunlan & Wang, Xiaojiao & Xi, Jianchao & Feng, Yongzhong & Ren, Guangxin, 2017. "Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion," Energy, Elsevier, vol. 135(C), pages 352-360.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:352-360
    DOI: 10.1016/j.energy.2017.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    2. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    3. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of pungency degree on mesophilic anaerobic digestion of kitchen waste," Applied Energy, Elsevier, vol. 181(C), pages 171-178.
    4. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    5. Zhen, Guangyin & Lu, Xueqin & Kobayashi, Takuro & Li, Yu-You & Xu, Kaiqin & Zhao, Youcai, 2015. "Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis," Applied Energy, Elsevier, vol. 148(C), pages 78-86.
    6. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    7. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    8. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    2. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    3. Lina Luo & Youpei Qu & Weijia Gong & Liyuan Qin & Wenzhe Li & Yong Sun, 2021. "Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw," Energies, MDPI, vol. 14(13), pages 1-15, July.
    4. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Ahmed Eleryan & Safaa Ragab & Amany El Sikaily & Antonio Pantaleo, 2021. "Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment," Energies, MDPI, vol. 14(6), pages 1-16, March.
    5. Hassan, Muhammad & Umar, Muhammad & Ding, Weimin & Mehryar, Esmaeil & Zhao, Chao, 2017. "Methane enhancement through co-digestion of chicken manure and oxidative cleaved wheat straw: Stability performance and kinetic modeling perspectives," Energy, Elsevier, vol. 141(C), pages 2314-2320.
    6. Shengrong Xue & Nan Zhao & Jinghui Song & Xiaojiao Wang, 2019. "Interactive Effects of Chemical Composition of Food Waste during Anaerobic Co-Digestion under Thermophilic Temperature," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    7. Mao, Chunlan & Wang, Yanbo & Wang, Xiaojiao & Ren, Guangxin & Yuan, Liuyan & Feng, Yongzhong, 2019. "Correlations between microbial community and C:N:P stoichiometry during the anaerobic digestion process," Energy, Elsevier, vol. 174(C), pages 687-695.
    8. Mao, Chunlan & Xi, Jianchao & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2019. "Biogas production and synergistic correlations of systematic parameters during batch anaerobic digestion of corn straw," Renewable Energy, Elsevier, vol. 132(C), pages 1271-1279.
    9. Guangxin Ren & Chunlan Mao & Ningning Zhai & Boran Wang & Zhichao Liu & Xiaojiao Wang & Gaihe Yang, 2019. "A New Adjustment Strategy to Relieve Inhibition during Anaerobic Codigestion of Food Waste and Cow Manure," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    10. Syaichurrozi, Iqbal & Basyir, M. Fakhri & Farraz, Rafi Muhammad & Rusdi, Rusdi, 2020. "A preliminary study: Effect of initial pH and Saccharomyces cerevisiae addition on biogas production from acid-pretreated Salvinia molesta and kinetics," Energy, Elsevier, vol. 207(C).
    11. Emmanuel Alepu Odey & Kaijun Wang & Zifu Li & Ruiling Gao, 2018. "Influence of organic loading rates on the production of methane from anaerobic digestion of sewage concentrate," Energy & Environment, , vol. 29(7), pages 1130-1141, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    2. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    4. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    5. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    6. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    7. Mao, Chunlan & Xi, Jianchao & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2019. "Biogas production and synergistic correlations of systematic parameters during batch anaerobic digestion of corn straw," Renewable Energy, Elsevier, vol. 132(C), pages 1271-1279.
    8. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    10. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    13. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    14. Jingyuan Cai & Liguo Zhang & Jing Tang & Dan Pan, 2019. "Adoption of Multiple Sustainable Manure Treatment Technologies by Pig Farmers in Rural China: A Case Study of Poyang Lake Region," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    15. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    19. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:352-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.