IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp638-648.html
   My bibliography  Save this article

Application of nano emulsion method in a methanol powered diesel engine

Author

Listed:
  • Soni, Dinesh Kumar
  • Gupta, Rajesh

Abstract

Demand of methanol-blended diesel fuel is increasing to compensate the use of diesel fuel in transportation purpose despite of their own drawbacks of emission like other petroleum fuels. One of the major drawbacks is high NOx emission. The nitrogen oxides (NOx) emission from methanol-blended diesel engine is not only harmful for the environment, but also affects the life of world population slowly. Present research is to reduce NOx emission from a methanol-blended diesel engine. The methanol-blended diesel engine was used in the experiments. In the investigation, diesel fuel is used with three blends of methanol-blended diesel fuel in the proportion of 0%, 10%, 20% and 30% respectively, viz, diesel, D + M10, D + M20 and D + M30. Results indicated that, D + M30 blend produced lower emissions than other blends, but NOx emission was still higher. Therefore, it was selected as an optimum blend. To bring this under control, water nano emulsion method was applied to the optimum blend. The optimum blend was treated by WNE method in the percentage of 5%, 10% and 15% while keeping the optimum blend ratio constant. The results revealed that, NOx emission was reduced significantly by the use of 15% water nano emulsified blend, whereas other emission were increased marginally.

Suggested Citation

  • Soni, Dinesh Kumar & Gupta, Rajesh, 2017. "Application of nano emulsion method in a methanol powered diesel engine," Energy, Elsevier, vol. 126(C), pages 638-648.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:638-648
    DOI: 10.1016/j.energy.2017.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730419X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    2. Qi, D.H. & Chen, H. & Geng, L.M. & Bian, Y.ZH. & Ren, X.CH., 2010. "Performance and combustion characteristics of biodiesel-diesel-methanol blend fuelled engine," Applied Energy, Elsevier, vol. 87(5), pages 1679-1686, May.
    3. Sampaio, Marcelo Regattieri & Rosa, Luiz Pinguelli & D'Agosto, Márcio de Almeida, 2007. "Ethanol-electric propulsion as a sustainable technological alternative for urban buses in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1514-1529, September.
    4. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    5. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    6. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    7. Agarwal, Avinash Kumar & Chandra Shukla, Pravesh & Patel, Chetankumar & Gupta, Jai Gopal & Sharma, Nikhil & Prasad, Rajesh Kumar & Agarwal, Rashmi A., 2016. "Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines," Renewable Energy, Elsevier, vol. 98(C), pages 283-291.
    8. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    9. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Pine oil–biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 466-473.
    10. Zhang, Wei & Chen, Zhaohui & Shen, Yinggang & Shu, Gequn & Chen, Guisheng & Xu, Biao & Zhao, Wei, 2013. "Influence of water emulsified diesel & oxygen-enriched air on diesel engine NO-smoke emissions and combustion characteristics," Energy, Elsevier, vol. 55(C), pages 369-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghavifar, Hadi & Nemati, Arash & Walther, Jens Honore, 2019. "Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine," Energy, Elsevier, vol. 187(C).
    2. Ağbulut, Ümit & Gürel, Ali Etem & Sarıdemir, Suat, 2021. "Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning alg," Energy, Elsevier, vol. 215(PA).
    3. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    3. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    4. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    5. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    6. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    7. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    8. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    9. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).
    10. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Abedin, M.J. & Imran, A. & Masjuki, H.H. & Kalam, M.A. & Shahir, S.A. & Varman, M. & Ruhul, A.M., 2016. "An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 306-316.
    12. Fayyazbakhsh, Ahmad & Pirouzfar, Vahid, 2017. "Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 891-901.
    13. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    14. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    15. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    16. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    17. Khalife, Esmail & Kazerooni, Hanif & Mirsalim, Mostafa & Roodbar Shojaei, Taha & Mohammadi, Pouya & Salleh, Amran Mohd & Najafi, Bahman & Tabatabaei, Meisam, 2017. "Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend," Energy, Elsevier, vol. 121(C), pages 331-340.
    18. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    19. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    20. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:638-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.