IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp283-291.html
   My bibliography  Save this article

Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines

Author

Listed:
  • Agarwal, Avinash Kumar
  • Chandra Shukla, Pravesh
  • Patel, Chetankumar
  • Gupta, Jai Gopal
  • Sharma, Nikhil
  • Prasad, Rajesh Kumar
  • Agarwal, Rashmi A.

Abstract

Diesel engine emissions consist of several harmful gaseous species, some of which are regulated by stringent emission norms, while many others are not. These unregulated emission species are responsible for adverse environmental impact and serious health hazards upon prolonged exposure. In this study, a four-cylinder, 1.4 l, compression ignition (CI) engine was used for characterization of unregulated gaseous exhaust emissions measured at 2500 rpm at varying engine loads (0, 25, 50, 75 and 100%). The test fuels investigated were Karanja biodiesel blended with diesel (KB5, KB20), methanol blended with diesel (M5) and baseline mineral diesel. Fourier transform infrared (FTIR) emission analyzer was used to measure unregulated emission species and raw exhaust gas emission analyzer was used to measure regulated emission species in exhaust. Results show an increasing trend for some of the unregulated species from blends of biodiesel such as formaldehyde, acetaldehyde, ethanol, n-butane however methane reduced upon using these oxygenated fuel blends except methanol, compared to baseline mineral diesel. Nevertheless, no significant changes were observed for sulfur dioxide, iso-butane, n-octane, n-pentane, formic acid, benzene, acetylene and ethylene upon using biodiesel and methanol blends.

Suggested Citation

  • Agarwal, Avinash Kumar & Chandra Shukla, Pravesh & Patel, Chetankumar & Gupta, Jai Gopal & Sharma, Nikhil & Prasad, Rajesh Kumar & Agarwal, Rashmi A., 2016. "Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines," Renewable Energy, Elsevier, vol. 98(C), pages 283-291.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:283-291
    DOI: 10.1016/j.renene.2016.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    2. Agarwal, Avinash Kumar & Shukla, Pravesh Chandra & Gupta, Jai Gopal & Patel, Chetankumar & Prasad, Rajesh Kumar & Sharma, Nikhil, 2015. "Unregulated emissions from a gasohol (E5, E15, M5, and M15) fuelled spark ignition engine," Applied Energy, Elsevier, vol. 154(C), pages 732-741.
    3. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ettefaghi, Ehsanollah & Ghobadian, Barat & Rashidi, Alimorad & Najafi, G. & Khoshtaghaza, Mohammad Hadi & Rashtchi, Maryam & Sadeghian, Sina, 2018. "A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions," Renewable Energy, Elsevier, vol. 125(C), pages 64-72.
    2. Zuo, Lei & Wang, Junfeng & Mei, Deqing & Dai, Shengchao & Adu-Mensah, Derick, 2022. "Experimental investigation on combustion and (regulated and unregulated) emissions performance of a common-rail diesel engine using partially hydrogenated biodiesel-ethanol-diesel ternary blend," Renewable Energy, Elsevier, vol. 185(C), pages 1272-1283.
    3. Soni, Dinesh Kumar & Gupta, Rajesh, 2017. "Application of nano emulsion method in a methanol powered diesel engine," Energy, Elsevier, vol. 126(C), pages 638-648.
    4. Alharthi, Majed & Hanif, Imran & Alamoudi, Hawazen, 2022. "Impact of environmental pollution on human health and financial status of households in MENA countries: Future of using renewable energy to eliminate the environmental pollution," Renewable Energy, Elsevier, vol. 190(C), pages 338-346.
    5. Nabgan, Walid & Tuan Abdullah, Tuan Amran & Mat, Ramli & Nabgan, Bahador & Gambo, Yahya & Ibrahim, Maryam & Ahmad, Arshad & Jalil, Aishah Abdul & Triwahyono, Sugeng & Saeh, Ibrahim, 2017. "Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 347-357.
    6. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    7. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    8. Gong, Changming & Si, Xiankai & Wang, Kang & Wei, Fuxing & Liu, Fenghua, 2018. "Numerical analysis of carbon monoxide, formaldehyde and unburned methanol emissions with ozone addition from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 144(C), pages 432-442.
    9. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    4. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    5. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    6. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    7. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    9. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    10. Reddy, M. Sarveshwar & Sharma, Nikhil & Agarwal, Avinash Kumar, 2016. "Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine," Renewable Energy, Elsevier, vol. 99(C), pages 1008-1018.
    11. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    12. S K Narendranathan & K Sudhagar & R Karthikeyan, 2019. "Optimization of engine operating parameters suitable for punnai oil application in CI engine using Grey relational method," Energy & Environment, , vol. 30(4), pages 732-751, June.
    13. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    14. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    15. Herreros, J.M. & Jones, A. & Sukjit, E. & Tsolakis, A., 2014. "Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions," Applied Energy, Elsevier, vol. 116(C), pages 58-65.
    16. Blin, J. & Brunschwig, C. & Chapuis, A. & Changotade, O. & Sidibe, S.S. & Noumi, E.S. & Girard, P., 2013. "Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 580-597.
    17. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    18. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Pine oil–biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 466-473.
    19. Pinzi, S. & López, I. & Leiva-Candia, D.E. & Redel-Macías, M.D. & Herreros, J.M. & Cubero-Atienza, A. & Dorado, M.P., 2018. "Castor oil enhanced effect on fuel ethanol-diesel fuel blend properties," Applied Energy, Elsevier, vol. 224(C), pages 409-416.
    20. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:283-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.