IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp663-670.html
   My bibliography  Save this article

Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure

Author

Listed:
  • Yan, Dong
  • Liang, Lingjiang
  • Yang, Jiajun
  • Zhang, Tao
  • Pu, Jian
  • Chi, Bo
  • Li, Jian

Abstract

This study describes the development of solid oxide fuel cell (SOFC) stack with external manifold structure. The stack used anode supported cells with size of 11 cm × 11 cm which are fabricated by tape casting, screen-printing and co-sintering. Computer simulation was employed to evaluate the gas distribution in the external manifold stack. The 10-cell stack was operated at 750 °C with hydrogen as fuel and air as oxidant and generated output power of 360 W, corresponding to power density of 440 mW/cm2. The degradation performance was investigated for over 750 h under the current density of 370 mA/cm2. Posttest analysis of the SOFC stack was operated to investigate the factors related to the performance degradation such as microstructure of electrodes, sealing, contact resistance and oxidation of metal interconnect. The study presented here showed the stack with external manifold can be considered as a strong candidate for SOFC stack design.

Suggested Citation

  • Yan, Dong & Liang, Lingjiang & Yang, Jiajun & Zhang, Tao & Pu, Jian & Chi, Bo & Li, Jian, 2017. "Performance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure," Energy, Elsevier, vol. 125(C), pages 663-670.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:663-670
    DOI: 10.1016/j.energy.2016.12.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216319120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    2. Bunin, Gene A. & Wuillemin, Zacharie & François, Grégory & Nakajo, Arata & Tsikonis, Leonidas & Bonvin, Dominique, 2012. "Experimental real-time optimization of a solid oxide fuel cell stack via constraint adaptation," Energy, Elsevier, vol. 39(1), pages 54-62.
    3. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    4. Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
    5. Roshandel, Ramin & Parhizkar, Tarannom, 2016. "Degradation based optimization framework for long term applications of energy systems, case study: Solid oxide fuel cell stacks," Energy, Elsevier, vol. 107(C), pages 172-181.
    6. Wei, S.-S. & Wang, T.-H. & Wu, J.-S., 2014. "Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack," Energy, Elsevier, vol. 69(C), pages 553-561.
    7. Mehran, Muhammad Taqi & Lim, Tak-Hyoung & Lee, Seung-Bok & Lee, Jong-Won & Park, Seok-Ju & Song, Rak-Hyun, 2016. "Long-term performance degradation study of solid oxide carbon fuel cells integrated with a steam gasifier," Energy, Elsevier, vol. 113(C), pages 1051-1061.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    2. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    3. Lixiang Cui & Haibo Huo & Genhui Xie & Jingxiang Xu & Xinghong Kuang & Zhaopeng Dong, 2022. "Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    4. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    5. Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
    6. Yang, JiaJun & Yan, Dong & Huang, Wei & Li, Jun & Pu, Jian & Chi, Bo & Jian, Li, 2018. "Improvement on durability and thermal cycle performance for solid oxide fuel cell stack with external manifold structure," Energy, Elsevier, vol. 149(C), pages 903-913.
    7. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
    8. Jie Ma & Suning Ma & Xinyi Zhang & Daifen Chen & Juan He, 2018. "Development of Large-Scale and Quasi Multi-Physics Model for Whole Structure of the Typical Solid Oxide Fuel Cell Stacks," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    9. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    10. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2019. "Economic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 166(C), pages 236-245.
    11. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    2. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    3. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    4. Xenos, Dionysios P. & Hofmann, Philipp & Panopoulos, Kyriakos D. & Kakaras, Emmanuel, 2015. "Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™," Energy, Elsevier, vol. 81(C), pages 84-102.
    5. Mounir, Hamid & Belaiche, Mohamed & El Marjani, Abdellatif & El Gharad, Abdellah, 2014. "Thermal stress and probability of survival investigation in a multi-bundle integrated-planar solid oxide fuel cells IP-SOFC (integrated-planar solid oxide fuel cell)," Energy, Elsevier, vol. 66(C), pages 378-386.
    6. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    7. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    8. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    9. de Avila Ferreira, Tafarel & Wuillemin, Zacharie & Faulwasser, Timm & Salzmann, Christophe & Van herle, Jan & Bonvin, Dominique, 2019. "Enforcing optimal operation in solid-oxide fuel-cell systems," Energy, Elsevier, vol. 181(C), pages 281-293.
    10. Karol K. Śreniawski & Maciej Chalusiak & Marcin Moździerz & Janusz S. Szmyd & Grzegorz Brus, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 1: Model and Validation," Energies, MDPI, vol. 16(11), pages 1-25, June.
    11. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    12. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    13. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    14. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    15. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    16. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    17. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    19. Marek Skrzypkiewicz & Michal Wierzbicki & Stanislaw Jagielski & Yevgeniy Naumovich & Konrad Motylinski & Jakub Kupecki & Agnieszka Zurawska & Magdalena Kosiorek, 2022. "Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC," Energies, MDPI, vol. 15(4), pages 1-17, February.
    20. Karol K. Śreniawski & Marcin Moździerz & Grzegorz Brus & Janusz S. Szmyd, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 2: Numerical Analysis," Energies, MDPI, vol. 16(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:663-670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.